| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relss |
|- ( A C_ B -> ( Rel B -> Rel A ) ) |
| 2 |
|
coss1 |
|- ( A C_ B -> ( A o. `' A ) C_ ( B o. `' A ) ) |
| 3 |
|
cnvss |
|- ( A C_ B -> `' A C_ `' B ) |
| 4 |
|
coss2 |
|- ( `' A C_ `' B -> ( B o. `' A ) C_ ( B o. `' B ) ) |
| 5 |
3 4
|
syl |
|- ( A C_ B -> ( B o. `' A ) C_ ( B o. `' B ) ) |
| 6 |
2 5
|
sstrd |
|- ( A C_ B -> ( A o. `' A ) C_ ( B o. `' B ) ) |
| 7 |
|
sstr2 |
|- ( ( A o. `' A ) C_ ( B o. `' B ) -> ( ( B o. `' B ) C_ _I -> ( A o. `' A ) C_ _I ) ) |
| 8 |
6 7
|
syl |
|- ( A C_ B -> ( ( B o. `' B ) C_ _I -> ( A o. `' A ) C_ _I ) ) |
| 9 |
1 8
|
anim12d |
|- ( A C_ B -> ( ( Rel B /\ ( B o. `' B ) C_ _I ) -> ( Rel A /\ ( A o. `' A ) C_ _I ) ) ) |
| 10 |
|
df-fun |
|- ( Fun B <-> ( Rel B /\ ( B o. `' B ) C_ _I ) ) |
| 11 |
|
df-fun |
|- ( Fun A <-> ( Rel A /\ ( A o. `' A ) C_ _I ) ) |
| 12 |
9 10 11
|
3imtr4g |
|- ( A C_ B -> ( Fun B -> Fun A ) ) |