Metamath Proof Explorer


Theorem funssfv

Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994)

Ref Expression
Assertion funssfv
|- ( ( Fun F /\ G C_ F /\ A e. dom G ) -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 fvres
 |-  ( A e. dom G -> ( ( F |` dom G ) ` A ) = ( F ` A ) )
2 1 eqcomd
 |-  ( A e. dom G -> ( F ` A ) = ( ( F |` dom G ) ` A ) )
3 funssres
 |-  ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G )
4 3 fveq1d
 |-  ( ( Fun F /\ G C_ F ) -> ( ( F |` dom G ) ` A ) = ( G ` A ) )
5 2 4 sylan9eqr
 |-  ( ( ( Fun F /\ G C_ F ) /\ A e. dom G ) -> ( F ` A ) = ( G ` A ) )
6 5 3impa
 |-  ( ( Fun F /\ G C_ F /\ A e. dom G ) -> ( F ` A ) = ( G ` A ) )