| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funss |
|- ( F C_ G -> ( Fun G -> Fun F ) ) |
| 2 |
1
|
impcom |
|- ( ( Fun G /\ F C_ G ) -> Fun F ) |
| 3 |
2
|
funfnd |
|- ( ( Fun G /\ F C_ G ) -> F Fn dom F ) |
| 4 |
|
funfn |
|- ( Fun G <-> G Fn dom G ) |
| 5 |
4
|
biimpi |
|- ( Fun G -> G Fn dom G ) |
| 6 |
5
|
adantr |
|- ( ( Fun G /\ F C_ G ) -> G Fn dom G ) |
| 7 |
3 6
|
jca |
|- ( ( Fun G /\ F C_ G ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 8 |
7
|
3adant3 |
|- ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 9 |
8
|
adantr |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 10 |
|
dmss |
|- ( F C_ G -> dom F C_ dom G ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( Fun G /\ F C_ G /\ G e. V ) -> dom F C_ dom G ) |
| 12 |
11
|
adantr |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> dom F C_ dom G ) |
| 13 |
|
dmexg |
|- ( G e. V -> dom G e. _V ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( Fun G /\ F C_ G /\ G e. V ) -> dom G e. _V ) |
| 15 |
14
|
adantr |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> dom G e. _V ) |
| 16 |
|
simpr |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> Z e. _V ) |
| 17 |
12 15 16
|
3jca |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) |
| 18 |
9 17
|
jca |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( ( F Fn dom F /\ G Fn dom G ) /\ ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) ) |
| 19 |
|
funssfv |
|- ( ( Fun G /\ F C_ G /\ x e. dom F ) -> ( G ` x ) = ( F ` x ) ) |
| 20 |
19
|
3expa |
|- ( ( ( Fun G /\ F C_ G ) /\ x e. dom F ) -> ( G ` x ) = ( F ` x ) ) |
| 21 |
|
eqeq1 |
|- ( ( G ` x ) = ( F ` x ) -> ( ( G ` x ) = Z <-> ( F ` x ) = Z ) ) |
| 22 |
21
|
biimpd |
|- ( ( G ` x ) = ( F ` x ) -> ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 23 |
20 22
|
syl |
|- ( ( ( Fun G /\ F C_ G ) /\ x e. dom F ) -> ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 24 |
23
|
ralrimiva |
|- ( ( Fun G /\ F C_ G ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 25 |
24
|
3adant3 |
|- ( ( Fun G /\ F C_ G /\ G e. V ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 26 |
25
|
adantr |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 27 |
|
suppfnss |
|- ( ( ( F Fn dom F /\ G Fn dom G ) /\ ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) -> ( A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| 28 |
18 26 27
|
sylc |
|- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( F supp Z ) C_ ( G supp Z ) ) |
| 29 |
28
|
expcom |
|- ( Z e. _V -> ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| 30 |
|
ssid |
|- (/) C_ (/) |
| 31 |
|
simpr |
|- ( ( F e. _V /\ Z e. _V ) -> Z e. _V ) |
| 32 |
|
supp0prc |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
| 33 |
31 32
|
nsyl5 |
|- ( -. Z e. _V -> ( F supp Z ) = (/) ) |
| 34 |
|
simpr |
|- ( ( G e. _V /\ Z e. _V ) -> Z e. _V ) |
| 35 |
|
supp0prc |
|- ( -. ( G e. _V /\ Z e. _V ) -> ( G supp Z ) = (/) ) |
| 36 |
34 35
|
nsyl5 |
|- ( -. Z e. _V -> ( G supp Z ) = (/) ) |
| 37 |
33 36
|
sseq12d |
|- ( -. Z e. _V -> ( ( F supp Z ) C_ ( G supp Z ) <-> (/) C_ (/) ) ) |
| 38 |
30 37
|
mpbiri |
|- ( -. Z e. _V -> ( F supp Z ) C_ ( G supp Z ) ) |
| 39 |
38
|
a1d |
|- ( -. Z e. _V -> ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| 40 |
29 39
|
pm2.61i |
|- ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) |