Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
2 |
1
|
biimpi |
|- ( Fun F -> F Fn dom F ) |
3 |
|
rnss |
|- ( F C_ ( A X. B ) -> ran F C_ ran ( A X. B ) ) |
4 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
5 |
3 4
|
sstrdi |
|- ( F C_ ( A X. B ) -> ran F C_ B ) |
6 |
2 5
|
anim12i |
|- ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F Fn dom F /\ ran F C_ B ) ) |
7 |
|
df-f |
|- ( F : dom F --> B <-> ( F Fn dom F /\ ran F C_ B ) ) |
8 |
6 7
|
sylibr |
|- ( ( Fun F /\ F C_ ( A X. B ) ) -> F : dom F --> B ) |
9 |
|
dmss |
|- ( F C_ ( A X. B ) -> dom F C_ dom ( A X. B ) ) |
10 |
|
dmxpss |
|- dom ( A X. B ) C_ A |
11 |
9 10
|
sstrdi |
|- ( F C_ ( A X. B ) -> dom F C_ A ) |
12 |
11
|
adantl |
|- ( ( Fun F /\ F C_ ( A X. B ) ) -> dom F C_ A ) |
13 |
8 12
|
jca |
|- ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F : dom F --> B /\ dom F C_ A ) ) |
14 |
|
ffun |
|- ( F : dom F --> B -> Fun F ) |
15 |
14
|
adantr |
|- ( ( F : dom F --> B /\ dom F C_ A ) -> Fun F ) |
16 |
|
fssxp |
|- ( F : dom F --> B -> F C_ ( dom F X. B ) ) |
17 |
|
xpss1 |
|- ( dom F C_ A -> ( dom F X. B ) C_ ( A X. B ) ) |
18 |
16 17
|
sylan9ss |
|- ( ( F : dom F --> B /\ dom F C_ A ) -> F C_ ( A X. B ) ) |
19 |
15 18
|
jca |
|- ( ( F : dom F --> B /\ dom F C_ A ) -> ( Fun F /\ F C_ ( A X. B ) ) ) |
20 |
13 19
|
impbii |
|- ( ( Fun F /\ F C_ ( A X. B ) ) <-> ( F : dom F --> B /\ dom F C_ A ) ) |