| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funtp.1 |  |-  A e. _V | 
						
							| 2 |  | funtp.2 |  |-  B e. _V | 
						
							| 3 |  | funtp.3 |  |-  C e. _V | 
						
							| 4 |  | funtp.4 |  |-  D e. _V | 
						
							| 5 |  | funtp.5 |  |-  E e. _V | 
						
							| 6 |  | funtp.6 |  |-  F e. _V | 
						
							| 7 | 1 2 4 5 | funpr |  |-  ( A =/= B -> Fun { <. A , D >. , <. B , E >. } ) | 
						
							| 8 | 3 6 | funsn |  |-  Fun { <. C , F >. } | 
						
							| 9 | 7 8 | jctir |  |-  ( A =/= B -> ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) ) | 
						
							| 10 | 4 5 | dmprop |  |-  dom { <. A , D >. , <. B , E >. } = { A , B } | 
						
							| 11 |  | df-pr |  |-  { A , B } = ( { A } u. { B } ) | 
						
							| 12 | 10 11 | eqtri |  |-  dom { <. A , D >. , <. B , E >. } = ( { A } u. { B } ) | 
						
							| 13 | 6 | dmsnop |  |-  dom { <. C , F >. } = { C } | 
						
							| 14 | 12 13 | ineq12i |  |-  ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = ( ( { A } u. { B } ) i^i { C } ) | 
						
							| 15 |  | disjsn2 |  |-  ( A =/= C -> ( { A } i^i { C } ) = (/) ) | 
						
							| 16 |  | disjsn2 |  |-  ( B =/= C -> ( { B } i^i { C } ) = (/) ) | 
						
							| 17 | 15 16 | anim12i |  |-  ( ( A =/= C /\ B =/= C ) -> ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) ) | 
						
							| 18 |  | undisj1 |  |-  ( ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) <-> ( ( { A } u. { B } ) i^i { C } ) = (/) ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ( A =/= C /\ B =/= C ) -> ( ( { A } u. { B } ) i^i { C } ) = (/) ) | 
						
							| 20 | 14 19 | eqtrid |  |-  ( ( A =/= C /\ B =/= C ) -> ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) | 
						
							| 21 |  | funun |  |-  ( ( ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) /\ ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) | 
						
							| 22 | 9 20 21 | syl2an |  |-  ( ( A =/= B /\ ( A =/= C /\ B =/= C ) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) | 
						
							| 23 | 22 | 3impb |  |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) | 
						
							| 24 |  | df-tp |  |-  { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) | 
						
							| 25 | 24 | funeqi |  |-  ( Fun { <. A , D >. , <. B , E >. , <. C , F >. } <-> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) | 
						
							| 26 | 23 25 | sylibr |  |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } ) |