Step |
Hyp |
Ref |
Expression |
1 |
|
funtp.1 |
|- A e. _V |
2 |
|
funtp.2 |
|- B e. _V |
3 |
|
funtp.3 |
|- C e. _V |
4 |
|
funtp.4 |
|- D e. _V |
5 |
|
funtp.5 |
|- E e. _V |
6 |
|
funtp.6 |
|- F e. _V |
7 |
1 2 4 5
|
funpr |
|- ( A =/= B -> Fun { <. A , D >. , <. B , E >. } ) |
8 |
3 6
|
funsn |
|- Fun { <. C , F >. } |
9 |
7 8
|
jctir |
|- ( A =/= B -> ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) ) |
10 |
4 5
|
dmprop |
|- dom { <. A , D >. , <. B , E >. } = { A , B } |
11 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
12 |
10 11
|
eqtri |
|- dom { <. A , D >. , <. B , E >. } = ( { A } u. { B } ) |
13 |
6
|
dmsnop |
|- dom { <. C , F >. } = { C } |
14 |
12 13
|
ineq12i |
|- ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = ( ( { A } u. { B } ) i^i { C } ) |
15 |
|
disjsn2 |
|- ( A =/= C -> ( { A } i^i { C } ) = (/) ) |
16 |
|
disjsn2 |
|- ( B =/= C -> ( { B } i^i { C } ) = (/) ) |
17 |
15 16
|
anim12i |
|- ( ( A =/= C /\ B =/= C ) -> ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) ) |
18 |
|
undisj1 |
|- ( ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) <-> ( ( { A } u. { B } ) i^i { C } ) = (/) ) |
19 |
17 18
|
sylib |
|- ( ( A =/= C /\ B =/= C ) -> ( ( { A } u. { B } ) i^i { C } ) = (/) ) |
20 |
14 19
|
eqtrid |
|- ( ( A =/= C /\ B =/= C ) -> ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) |
21 |
|
funun |
|- ( ( ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) /\ ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
22 |
9 20 21
|
syl2an |
|- ( ( A =/= B /\ ( A =/= C /\ B =/= C ) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
23 |
22
|
3impb |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
24 |
|
df-tp |
|- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
25 |
24
|
funeqi |
|- ( Fun { <. A , D >. , <. B , E >. , <. C , F >. } <-> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
26 |
23 25
|
sylibr |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } ) |