Metamath Proof Explorer


Theorem fununmo

Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019)

Ref Expression
Assertion fununmo
|- ( Fun ( F u. G ) -> E* y x F y )

Proof

Step Hyp Ref Expression
1 funmo
 |-  ( Fun ( F u. G ) -> E* y x ( F u. G ) y )
2 orc
 |-  ( x F y -> ( x F y \/ x G y ) )
3 brun
 |-  ( x ( F u. G ) y <-> ( x F y \/ x G y ) )
4 2 3 sylibr
 |-  ( x F y -> x ( F u. G ) y )
5 4 moimi
 |-  ( E* y x ( F u. G ) y -> E* y x F y )
6 1 5 syl
 |-  ( Fun ( F u. G ) -> E* y x F y )