Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fununmo | |- ( Fun ( F u. G ) -> E* y x F y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo | |- ( Fun ( F u. G ) -> E* y x ( F u. G ) y ) |
|
| 2 | orc | |- ( x F y -> ( x F y \/ x G y ) ) |
|
| 3 | brun | |- ( x ( F u. G ) y <-> ( x F y \/ x G y ) ) |
|
| 4 | 2 3 | sylibr | |- ( x F y -> x ( F u. G ) y ) |
| 5 | 4 | moimi | |- ( E* y x ( F u. G ) y -> E* y x F y ) |
| 6 | 1 5 | syl | |- ( Fun ( F u. G ) -> E* y x F y ) |