Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fununmo | |- ( Fun ( F u. G ) -> E* y x F y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo | |- ( Fun ( F u. G ) -> E* y x ( F u. G ) y ) |
|
2 | orc | |- ( x F y -> ( x F y \/ x G y ) ) |
|
3 | brun | |- ( x ( F u. G ) y <-> ( x F y \/ x G y ) ) |
|
4 | 2 3 | sylibr | |- ( x F y -> x ( F u. G ) y ) |
5 | 4 | moimi | |- ( E* y x ( F u. G ) y -> E* y x F y ) |
6 | 1 5 | syl | |- ( Fun ( F u. G ) -> E* y x F y ) |