Metamath Proof Explorer


Theorem funvtxdm2val

Description: The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020) (Revised by AV, 7-Jun-2021) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses funvtxdm2val.a
|- A e. _V
funvtxdm2val.b
|- B e. _V
Assertion funvtxdm2val
|- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> ( Vtx ` G ) = ( Base ` G ) )

Proof

Step Hyp Ref Expression
1 funvtxdm2val.a
 |-  A e. _V
2 funvtxdm2val.b
 |-  B e. _V
3 vtxval
 |-  ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) )
4 1 2 fun2dmnop0
 |-  ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) )
5 4 iffalsed
 |-  ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) )
6 3 5 syl5eq
 |-  ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> ( Vtx ` G ) = ( Base ` G ) )