Metamath Proof Explorer


Theorem funvtxval0

Description: The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020) (Revised by AV, 7-Jun-2021) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypothesis funvtxval0.s
|- S e. _V
Assertion funvtxval0
|- ( ( Fun ( G \ { (/) } ) /\ S =/= ( Base ` ndx ) /\ { ( Base ` ndx ) , S } C_ dom G ) -> ( Vtx ` G ) = ( Base ` G ) )

Proof

Step Hyp Ref Expression
1 funvtxval0.s
 |-  S e. _V
2 necom
 |-  ( S =/= ( Base ` ndx ) <-> ( Base ` ndx ) =/= S )
3 fvex
 |-  ( Base ` ndx ) e. _V
4 3 1 funvtxdm2val
 |-  ( ( Fun ( G \ { (/) } ) /\ ( Base ` ndx ) =/= S /\ { ( Base ` ndx ) , S } C_ dom G ) -> ( Vtx ` G ) = ( Base ` G ) )
5 2 4 syl3an2b
 |-  ( ( Fun ( G \ { (/) } ) /\ S =/= ( Base ` ndx ) /\ { ( Base ` ndx ) , S } C_ dom G ) -> ( Vtx ` G ) = ( Base ` G ) )