Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
|- V = ( Vtx ` G ) |
2 |
|
fusgreg2wsp.m |
|- M = ( a e. V |-> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } ) |
3 |
|
wspthsswwlkn |
|- ( 2 WSPathsN G ) C_ ( 2 WWalksN G ) |
4 |
3
|
sseli |
|- ( p e. ( 2 WSPathsN G ) -> p e. ( 2 WWalksN G ) ) |
5 |
1
|
midwwlks2s3 |
|- ( p e. ( 2 WWalksN G ) -> E. x e. V ( p ` 1 ) = x ) |
6 |
4 5
|
syl |
|- ( p e. ( 2 WSPathsN G ) -> E. x e. V ( p ` 1 ) = x ) |
7 |
6
|
a1i |
|- ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) -> E. x e. V ( p ` 1 ) = x ) ) |
8 |
7
|
pm4.71rd |
|- ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) ) |
9 |
|
ancom |
|- ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) |
10 |
9
|
rexbii |
|- ( E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> E. x e. V ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) |
11 |
|
r19.41v |
|- ( E. x e. V ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) |
12 |
10 11
|
bitr2i |
|- ( ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) |
13 |
12
|
a1i |
|- ( G e. FinUSGraph -> ( ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) ) |
14 |
1 2
|
fusgreg2wsplem |
|- ( x e. V -> ( p e. ( M ` x ) <-> ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) ) |
15 |
14
|
bicomd |
|- ( x e. V -> ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> p e. ( M ` x ) ) ) |
16 |
15
|
adantl |
|- ( ( G e. FinUSGraph /\ x e. V ) -> ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> p e. ( M ` x ) ) ) |
17 |
16
|
rexbidva |
|- ( G e. FinUSGraph -> ( E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> E. x e. V p e. ( M ` x ) ) ) |
18 |
8 13 17
|
3bitrd |
|- ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> E. x e. V p e. ( M ` x ) ) ) |
19 |
|
eliun |
|- ( p e. U_ x e. V ( M ` x ) <-> E. x e. V p e. ( M ` x ) ) |
20 |
18 19
|
bitr4di |
|- ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> p e. U_ x e. V ( M ` x ) ) ) |
21 |
20
|
eqrdv |
|- ( G e. FinUSGraph -> ( 2 WSPathsN G ) = U_ x e. V ( M ` x ) ) |