Step |
Hyp |
Ref |
Expression |
1 |
|
fusgreghash2wsp.v |
|- V = ( Vtx ` G ) |
2 |
|
fveq1 |
|- ( s = t -> ( s ` 1 ) = ( t ` 1 ) ) |
3 |
2
|
eqeq1d |
|- ( s = t -> ( ( s ` 1 ) = a <-> ( t ` 1 ) = a ) ) |
4 |
3
|
cbvrabv |
|- { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } = { t e. ( 2 WSPathsN G ) | ( t ` 1 ) = a } |
5 |
4
|
mpteq2i |
|- ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) = ( a e. V |-> { t e. ( 2 WSPathsN G ) | ( t ` 1 ) = a } ) |
6 |
1 5
|
fusgreg2wsp |
|- ( G e. FinUSGraph -> ( 2 WSPathsN G ) = U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( 2 WSPathsN G ) = U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) |
8 |
7
|
fveq2d |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) |
9 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
10 |
|
eqeq2 |
|- ( a = y -> ( ( s ` 1 ) = a <-> ( s ` 1 ) = y ) ) |
11 |
10
|
rabbidv |
|- ( a = y -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) |
12 |
|
eqid |
|- ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) = ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) |
13 |
|
ovex |
|- ( 2 WSPathsN G ) e. _V |
14 |
13
|
rabex |
|- { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. _V |
15 |
11 12 14
|
fvmpt |
|- ( y e. V -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) |
16 |
15
|
adantl |
|- ( ( G e. FinUSGraph /\ y e. V ) -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) |
17 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
18 |
17
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) |
19 |
|
wspthnfi |
|- ( ( Vtx ` G ) e. Fin -> ( 2 WSPathsN G ) e. Fin ) |
20 |
|
rabfi |
|- ( ( 2 WSPathsN G ) e. Fin -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) |
21 |
18 19 20
|
3syl |
|- ( G e. FinUSGraph -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) |
22 |
21
|
adantr |
|- ( ( G e. FinUSGraph /\ y e. V ) -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) |
23 |
16 22
|
eqeltrd |
|- ( ( G e. FinUSGraph /\ y e. V ) -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) e. Fin ) |
24 |
1 5
|
2wspmdisj |
|- Disj_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) |
25 |
24
|
a1i |
|- ( G e. FinUSGraph -> Disj_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) |
26 |
9 23 25
|
hashiun |
|- ( G e. FinUSGraph -> ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) |
27 |
26
|
ad2antrr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) |
28 |
1 5
|
fusgreghash2wspv |
|- ( G e. FinUSGraph -> A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) |
29 |
|
ralim |
|- ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) |
30 |
28 29
|
syl |
|- ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) |
31 |
30
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) |
32 |
31
|
imp |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) |
33 |
|
2fveq3 |
|- ( v = y -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) |
34 |
33
|
eqeq1d |
|- ( v = y -> ( ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) <-> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) ) |
35 |
34
|
rspccva |
|- ( ( A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) /\ y e. V ) -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) |
36 |
32 35
|
sylan |
|- ( ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) /\ y e. V ) -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) |
37 |
36
|
sumeq2dv |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( K x. ( K - 1 ) ) ) |
38 |
9
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin ) |
39 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
40 |
1 39
|
fusgrregdegfi |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) |
41 |
40
|
imp |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. NN0 ) |
42 |
41
|
nn0cnd |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. CC ) |
43 |
|
kcnktkm1cn |
|- ( K e. CC -> ( K x. ( K - 1 ) ) e. CC ) |
44 |
42 43
|
syl |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K x. ( K - 1 ) ) e. CC ) |
45 |
|
fsumconst |
|- ( ( V e. Fin /\ ( K x. ( K - 1 ) ) e. CC ) -> sum_ y e. V ( K x. ( K - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) |
46 |
38 44 45
|
syl2an2r |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( K x. ( K - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) |
47 |
37 46
|
eqtrd |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) |
48 |
8 27 47
|
3eqtrd |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) |
49 |
48
|
ex |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |