Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
|- V = ( Vtx ` G ) |
2 |
|
fusgreg2wsp.m |
|- M = ( a e. V |-> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } ) |
3 |
1 2
|
fusgr2wsp2nb |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( M ` v ) = U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) |
4 |
3
|
fveq2d |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( # ` ( M ` v ) ) = ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) |
5 |
4
|
adantr |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( M ` v ) ) = ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) |
6 |
1
|
eleq2i |
|- ( v e. V <-> v e. ( Vtx ` G ) ) |
7 |
|
nbfiusgrfi |
|- ( ( G e. FinUSGraph /\ v e. ( Vtx ` G ) ) -> ( G NeighbVtx v ) e. Fin ) |
8 |
6 7
|
sylan2b |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( G NeighbVtx v ) e. Fin ) |
9 |
8
|
adantr |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( G NeighbVtx v ) e. Fin ) |
10 |
|
eqid |
|- ( ( G NeighbVtx v ) \ { c } ) = ( ( G NeighbVtx v ) \ { c } ) |
11 |
|
snfi |
|- { <" c v d "> } e. Fin |
12 |
11
|
a1i |
|- ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) /\ d e. ( ( G NeighbVtx v ) \ { c } ) ) -> { <" c v d "> } e. Fin ) |
13 |
1
|
nbgrssvtx |
|- ( G NeighbVtx v ) C_ V |
14 |
13
|
a1i |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> ( G NeighbVtx v ) C_ V ) |
15 |
14
|
ssdifd |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> ( ( G NeighbVtx v ) \ { c } ) C_ ( V \ { c } ) ) |
16 |
|
iunss1 |
|- ( ( ( G NeighbVtx v ) \ { c } ) C_ ( V \ { c } ) -> U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) |
17 |
15 16
|
syl |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) |
18 |
17
|
ralrimiva |
|- ( ( G e. FinUSGraph /\ v e. V ) -> A. c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) |
19 |
|
simpr |
|- ( ( G e. FinUSGraph /\ v e. V ) -> v e. V ) |
20 |
|
s3iunsndisj |
|- ( v e. V -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } ) |
21 |
19 20
|
syl |
|- ( ( G e. FinUSGraph /\ v e. V ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } ) |
22 |
|
disjss2 |
|- ( A. c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } -> ( Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) |
23 |
18 21 22
|
sylc |
|- ( ( G e. FinUSGraph /\ v e. V ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) |
24 |
23
|
adantr |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) |
25 |
19
|
adantr |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> v e. V ) |
26 |
25
|
anim1ci |
|- ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) ) -> ( c e. ( G NeighbVtx v ) /\ v e. V ) ) |
27 |
|
s3sndisj |
|- ( ( c e. ( G NeighbVtx v ) /\ v e. V ) -> Disj_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) |
28 |
26 27
|
syl |
|- ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) ) -> Disj_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) |
29 |
|
s3cli |
|- <" c v d "> e. Word _V |
30 |
|
hashsng |
|- ( <" c v d "> e. Word _V -> ( # ` { <" c v d "> } ) = 1 ) |
31 |
29 30
|
mp1i |
|- ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) /\ d e. ( ( G NeighbVtx v ) \ { c } ) ) -> ( # ` { <" c v d "> } ) = 1 ) |
32 |
9 10 12 24 28 31
|
hash2iun1dif1 |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) = ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) ) |
33 |
|
fusgrusgr |
|- ( G e. FinUSGraph -> G e. USGraph ) |
34 |
1
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
35 |
33 34
|
sylan |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
36 |
|
id |
|- ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
37 |
|
oveq1 |
|- ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( ( # ` ( G NeighbVtx v ) ) - 1 ) = ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) |
38 |
36 37
|
oveq12d |
|- ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) ) |
39 |
35 38
|
syl |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) ) |
40 |
|
id |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( VtxDeg ` G ) ` v ) = K ) |
41 |
|
oveq1 |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) - 1 ) = ( K - 1 ) ) |
42 |
40 41
|
oveq12d |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) = ( K x. ( K - 1 ) ) ) |
43 |
39 42
|
sylan9eq |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( K x. ( K - 1 ) ) ) |
44 |
5 32 43
|
3eqtrd |
|- ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) |
45 |
44
|
ex |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) ) |
46 |
45
|
ralrimiva |
|- ( G e. FinUSGraph -> A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) ) |