Step |
Hyp |
Ref |
Expression |
1 |
|
usgruhgr |
|- ( <. V , E >. e. USGraph -> <. V , E >. e. UHGraph ) |
2 |
1
|
3ad2ant2 |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> <. V , E >. e. UHGraph ) |
3 |
|
opvtxfv |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
4 |
3
|
3ad2ant1 |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Vtx ` <. V , E >. ) = V ) |
5 |
|
hasheq0 |
|- ( V e. X -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
6 |
5
|
biimpd |
|- ( V e. X -> ( ( # ` V ) = 0 -> V = (/) ) ) |
7 |
6
|
adantr |
|- ( ( V e. X /\ E e. Y ) -> ( ( # ` V ) = 0 -> V = (/) ) ) |
8 |
7
|
a1d |
|- ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. USGraph -> ( ( # ` V ) = 0 -> V = (/) ) ) ) |
9 |
8
|
3imp |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> V = (/) ) |
10 |
4 9
|
eqtrd |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Vtx ` <. V , E >. ) = (/) ) |
11 |
|
eqid |
|- ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) |
12 |
|
eqid |
|- ( Edg ` <. V , E >. ) = ( Edg ` <. V , E >. ) |
13 |
11 12
|
uhgr0v0e |
|- ( ( <. V , E >. e. UHGraph /\ ( Vtx ` <. V , E >. ) = (/) ) -> ( Edg ` <. V , E >. ) = (/) ) |
14 |
2 10 13
|
syl2anc |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Edg ` <. V , E >. ) = (/) ) |
15 |
|
0fin |
|- (/) e. Fin |
16 |
14 15
|
eqeltrdi |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( Edg ` <. V , E >. ) e. Fin ) |
17 |
|
eqid |
|- ( iEdg ` <. V , E >. ) = ( iEdg ` <. V , E >. ) |
18 |
17 12
|
usgredgffibi |
|- ( <. V , E >. e. USGraph -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
19 |
18
|
3ad2ant2 |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> ( iEdg ` <. V , E >. ) e. Fin ) ) |
20 |
|
opiedgfv |
|- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
21 |
20
|
3ad2ant1 |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( iEdg ` <. V , E >. ) = E ) |
22 |
21
|
eleq1d |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( iEdg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
23 |
19 22
|
bitrd |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> ( ( Edg ` <. V , E >. ) e. Fin <-> E e. Fin ) ) |
24 |
16 23
|
mpbid |
|- ( ( ( V e. X /\ E e. Y ) /\ <. V , E >. e. USGraph /\ ( # ` V ) = 0 ) -> E e. Fin ) |