Metamath Proof Explorer


Theorem fusgrfupgrfs

Description: A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021)

Ref Expression
Hypotheses fusgrfupgrfs.v
|- V = ( Vtx ` G )
fusgrfupgrfs.i
|- I = ( iEdg ` G )
Assertion fusgrfupgrfs
|- ( G e. FinUSGraph -> ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) )

Proof

Step Hyp Ref Expression
1 fusgrfupgrfs.v
 |-  V = ( Vtx ` G )
2 fusgrfupgrfs.i
 |-  I = ( iEdg ` G )
3 fusgrusgr
 |-  ( G e. FinUSGraph -> G e. USGraph )
4 usgrupgr
 |-  ( G e. USGraph -> G e. UPGraph )
5 3 4 syl
 |-  ( G e. FinUSGraph -> G e. UPGraph )
6 1 fusgrvtxfi
 |-  ( G e. FinUSGraph -> V e. Fin )
7 fusgrfis
 |-  ( G e. FinUSGraph -> ( Edg ` G ) e. Fin )
8 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
9 2 8 usgredgffibi
 |-  ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> I e. Fin ) )
10 3 9 syl
 |-  ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> I e. Fin ) )
11 7 10 mpbid
 |-  ( G e. FinUSGraph -> I e. Fin )
12 5 6 11 3jca
 |-  ( G e. FinUSGraph -> ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) )