Metamath Proof Explorer


Theorem fusgrvtxdgonume

Description: The number of vertices of odd degree is even in a finite simple graph. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 27-Dec-2021)

Ref Expression
Hypotheses finsumvtxdgeven.v
|- V = ( Vtx ` G )
finsumvtxdgeven.i
|- I = ( iEdg ` G )
finsumvtxdgeven.d
|- D = ( VtxDeg ` G )
Assertion fusgrvtxdgonume
|- ( G e. FinUSGraph -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) )

Proof

Step Hyp Ref Expression
1 finsumvtxdgeven.v
 |-  V = ( Vtx ` G )
2 finsumvtxdgeven.i
 |-  I = ( iEdg ` G )
3 finsumvtxdgeven.d
 |-  D = ( VtxDeg ` G )
4 1 2 fusgrfupgrfs
 |-  ( G e. FinUSGraph -> ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) )
5 1 2 3 vtxdgoddnumeven
 |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) )
6 4 5 syl
 |-  ( G e. FinUSGraph -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) )