Metamath Proof Explorer


Theorem fvbr0

Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fvbr0
|- ( X F ( F ` X ) \/ ( F ` X ) = (/) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( F ` X ) = ( F ` X )
2 tz6.12i
 |-  ( ( F ` X ) =/= (/) -> ( ( F ` X ) = ( F ` X ) -> X F ( F ` X ) ) )
3 1 2 mpi
 |-  ( ( F ` X ) =/= (/) -> X F ( F ` X ) )
4 3 necon1bi
 |-  ( -. X F ( F ` X ) -> ( F ` X ) = (/) )
5 4 orri
 |-  ( X F ( F ` X ) \/ ( F ` X ) = (/) )