| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcom |  |-  ( y = ( F ` x ) <-> ( F ` x ) = y ) | 
						
							| 2 |  | tz6.12i |  |-  ( y =/= (/) -> ( ( F ` x ) = y -> x F y ) ) | 
						
							| 3 | 1 2 | biimtrid |  |-  ( y =/= (/) -> ( y = ( F ` x ) -> x F y ) ) | 
						
							| 4 | 3 | eximdv |  |-  ( y =/= (/) -> ( E. x y = ( F ` x ) -> E. x x F y ) ) | 
						
							| 5 |  | vex |  |-  y e. _V | 
						
							| 6 | 5 | elrn |  |-  ( y e. ran F <-> E. x x F y ) | 
						
							| 7 | 4 6 | imbitrrdi |  |-  ( y =/= (/) -> ( E. x y = ( F ` x ) -> y e. ran F ) ) | 
						
							| 8 | 7 | com12 |  |-  ( E. x y = ( F ` x ) -> ( y =/= (/) -> y e. ran F ) ) | 
						
							| 9 | 8 | necon1bd |  |-  ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y = (/) ) ) | 
						
							| 10 |  | velsn |  |-  ( y e. { (/) } <-> y = (/) ) | 
						
							| 11 | 9 10 | imbitrrdi |  |-  ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y e. { (/) } ) ) | 
						
							| 12 | 11 | orrd |  |-  ( E. x y = ( F ` x ) -> ( y e. ran F \/ y e. { (/) } ) ) | 
						
							| 13 | 12 | ss2abi |  |-  { y | E. x y = ( F ` x ) } C_ { y | ( y e. ran F \/ y e. { (/) } ) } | 
						
							| 14 |  | df-un |  |-  ( ran F u. { (/) } ) = { y | ( y e. ran F \/ y e. { (/) } ) } | 
						
							| 15 | 13 14 | sseqtrri |  |-  { y | E. x y = ( F ` x ) } C_ ( ran F u. { (/) } ) |