Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
2 |
|
tz6.12i |
|- ( y =/= (/) -> ( ( F ` x ) = y -> x F y ) ) |
3 |
1 2
|
syl5bi |
|- ( y =/= (/) -> ( y = ( F ` x ) -> x F y ) ) |
4 |
3
|
eximdv |
|- ( y =/= (/) -> ( E. x y = ( F ` x ) -> E. x x F y ) ) |
5 |
|
vex |
|- y e. _V |
6 |
5
|
elrn |
|- ( y e. ran F <-> E. x x F y ) |
7 |
4 6
|
syl6ibr |
|- ( y =/= (/) -> ( E. x y = ( F ` x ) -> y e. ran F ) ) |
8 |
7
|
com12 |
|- ( E. x y = ( F ` x ) -> ( y =/= (/) -> y e. ran F ) ) |
9 |
8
|
necon1bd |
|- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y = (/) ) ) |
10 |
|
velsn |
|- ( y e. { (/) } <-> y = (/) ) |
11 |
9 10
|
syl6ibr |
|- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y e. { (/) } ) ) |
12 |
11
|
orrd |
|- ( E. x y = ( F ` x ) -> ( y e. ran F \/ y e. { (/) } ) ) |
13 |
12
|
ss2abi |
|- { y | E. x y = ( F ` x ) } C_ { y | ( y e. ran F \/ y e. { (/) } ) } |
14 |
|
df-un |
|- ( ran F u. { (/) } ) = { y | ( y e. ran F \/ y e. { (/) } ) } |
15 |
13 14
|
sseqtrri |
|- { y | E. x y = ( F ` x ) } C_ ( ran F u. { (/) } ) |