Metamath Proof Explorer


Theorem fvco

Description: Value of a function composition. Similar to Exercise 5 of TakeutiZaring p. 28. (Contributed by NM, 22-Apr-2006) (Proof shortened by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco
|- ( ( Fun G /\ A e. dom G ) -> ( ( F o. G ) ` A ) = ( F ` ( G ` A ) ) )

Proof

Step Hyp Ref Expression
1 funfn
 |-  ( Fun G <-> G Fn dom G )
2 fvco2
 |-  ( ( G Fn dom G /\ A e. dom G ) -> ( ( F o. G ) ` A ) = ( F ` ( G ` A ) ) )
3 1 2 sylanb
 |-  ( ( Fun G /\ A e. dom G ) -> ( ( F o. G ) ` A ) = ( F ` ( G ` A ) ) )