Step |
Hyp |
Ref |
Expression |
1 |
|
imaco |
|- ( ( F o. G ) " { X } ) = ( F " ( G " { X } ) ) |
2 |
|
fnsnfv |
|- ( ( G Fn A /\ X e. A ) -> { ( G ` X ) } = ( G " { X } ) ) |
3 |
2
|
imaeq2d |
|- ( ( G Fn A /\ X e. A ) -> ( F " { ( G ` X ) } ) = ( F " ( G " { X } ) ) ) |
4 |
1 3
|
eqtr4id |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) " { X } ) = ( F " { ( G ` X ) } ) ) |
5 |
4
|
eleq2d |
|- ( ( G Fn A /\ X e. A ) -> ( x e. ( ( F o. G ) " { X } ) <-> x e. ( F " { ( G ` X ) } ) ) ) |
6 |
5
|
iotabidv |
|- ( ( G Fn A /\ X e. A ) -> ( iota x x e. ( ( F o. G ) " { X } ) ) = ( iota x x e. ( F " { ( G ` X ) } ) ) ) |
7 |
|
dffv3 |
|- ( ( F o. G ) ` X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) |
8 |
|
dffv3 |
|- ( F ` ( G ` X ) ) = ( iota x x e. ( F " { ( G ` X ) } ) ) |
9 |
6 7 8
|
3eqtr4g |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |