Metamath Proof Explorer


Theorem fvco3d

Description: Value of a function composition. Deduction form of fvco3 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvco3d.1
|- ( ph -> G : A --> B )
fvco3d.2
|- ( ph -> C e. A )
Assertion fvco3d
|- ( ph -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) )

Proof

Step Hyp Ref Expression
1 fvco3d.1
 |-  ( ph -> G : A --> B )
2 fvco3d.2
 |-  ( ph -> C e. A )
3 fvco3
 |-  ( ( G : A --> B /\ C e. A ) -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) )