Step |
Hyp |
Ref |
Expression |
1 |
|
fvco4i.a |
|- (/) = ( F ` (/) ) |
2 |
|
fvco4i.b |
|- Fun G |
3 |
|
funfn |
|- ( Fun G <-> G Fn dom G ) |
4 |
2 3
|
mpbi |
|- G Fn dom G |
5 |
|
fvco2 |
|- ( ( G Fn dom G /\ X e. dom G ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
6 |
4 5
|
mpan |
|- ( X e. dom G -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
7 |
|
dmcoss |
|- dom ( F o. G ) C_ dom G |
8 |
7
|
sseli |
|- ( X e. dom ( F o. G ) -> X e. dom G ) |
9 |
|
ndmfv |
|- ( -. X e. dom ( F o. G ) -> ( ( F o. G ) ` X ) = (/) ) |
10 |
8 9
|
nsyl5 |
|- ( -. X e. dom G -> ( ( F o. G ) ` X ) = (/) ) |
11 |
|
ndmfv |
|- ( -. X e. dom G -> ( G ` X ) = (/) ) |
12 |
11
|
fveq2d |
|- ( -. X e. dom G -> ( F ` ( G ` X ) ) = ( F ` (/) ) ) |
13 |
1 10 12
|
3eqtr4a |
|- ( -. X e. dom G -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
14 |
6 13
|
pm2.61i |
|- ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) |