| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 3 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 | 2 3 4 | mapsnconst |  |-  ( X e. ( NN0 ^m 1o ) -> X = ( 1o X. { ( X ` (/) ) } ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> X = ( 1o X. { ( X ` (/) ) } ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) | 
						
							| 8 |  | elmapi |  |-  ( X e. ( NN0 ^m 1o ) -> X : 1o --> NN0 ) | 
						
							| 9 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 10 |  | ffvelcdm |  |-  ( ( X : 1o --> NN0 /\ (/) e. 1o ) -> ( X ` (/) ) e. NN0 ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( X e. ( NN0 ^m 1o ) -> ( X ` (/) ) e. NN0 ) | 
						
							| 12 | 1 | coe1fv |  |-  ( ( F e. V /\ ( X ` (/) ) e. NN0 ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) | 
						
							| 13 | 11 12 | sylan2 |  |-  ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) | 
						
							| 14 | 7 13 | eqtr4d |  |-  ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( A ` ( X ` (/) ) ) ) |