Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fval.a |
|- A = ( coe1 ` F ) |
2 |
|
df1o2 |
|- 1o = { (/) } |
3 |
|
nn0ex |
|- NN0 e. _V |
4 |
|
0ex |
|- (/) e. _V |
5 |
2 3 4
|
mapsnconst |
|- ( X e. ( NN0 ^m 1o ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
6 |
5
|
adantl |
|- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
7 |
6
|
fveq2d |
|- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
8 |
|
elmapi |
|- ( X e. ( NN0 ^m 1o ) -> X : 1o --> NN0 ) |
9 |
|
0lt1o |
|- (/) e. 1o |
10 |
|
ffvelrn |
|- ( ( X : 1o --> NN0 /\ (/) e. 1o ) -> ( X ` (/) ) e. NN0 ) |
11 |
8 9 10
|
sylancl |
|- ( X e. ( NN0 ^m 1o ) -> ( X ` (/) ) e. NN0 ) |
12 |
1
|
coe1fv |
|- ( ( F e. V /\ ( X ` (/) ) e. NN0 ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
13 |
11 12
|
sylan2 |
|- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
14 |
7 13
|
eqtr4d |
|- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( A ` ( X ` (/) ) ) ) |