| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( G Fn A /\ K Fn B ) -> G Fn A ) |
| 2 |
|
elinel1 |
|- ( X e. ( A i^i B ) -> X e. A ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> X e. A ) |
| 4 |
|
fvco2 |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 5 |
1 3 4
|
syl2an |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 6 |
|
simpr |
|- ( ( G Fn A /\ K Fn B ) -> K Fn B ) |
| 7 |
|
elinel2 |
|- ( X e. ( A i^i B ) -> X e. B ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> X e. B ) |
| 9 |
|
fvco2 |
|- ( ( K Fn B /\ X e. B ) -> ( ( H o. K ) ` X ) = ( H ` ( K ` X ) ) ) |
| 10 |
6 8 9
|
syl2an |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( H o. K ) ` X ) = ( H ` ( K ` X ) ) ) |
| 11 |
|
fveq2 |
|- ( ( K ` X ) = ( G ` X ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 12 |
11
|
eqcoms |
|- ( ( G ` X ) = ( K ` X ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 15 |
|
id |
|- ( G Fn A -> G Fn A ) |
| 16 |
|
fnfvelrn |
|- ( ( G Fn A /\ X e. A ) -> ( G ` X ) e. ran G ) |
| 17 |
15 2 16
|
syl2anr |
|- ( ( X e. ( A i^i B ) /\ G Fn A ) -> ( G ` X ) e. ran G ) |
| 18 |
17
|
ex |
|- ( X e. ( A i^i B ) -> ( G Fn A -> ( G ` X ) e. ran G ) ) |
| 19 |
|
id |
|- ( K Fn B -> K Fn B ) |
| 20 |
|
fnfvelrn |
|- ( ( K Fn B /\ X e. B ) -> ( K ` X ) e. ran K ) |
| 21 |
19 7 20
|
syl2anr |
|- ( ( X e. ( A i^i B ) /\ K Fn B ) -> ( K ` X ) e. ran K ) |
| 22 |
21
|
ex |
|- ( X e. ( A i^i B ) -> ( K Fn B -> ( K ` X ) e. ran K ) ) |
| 23 |
18 22
|
anim12d |
|- ( X e. ( A i^i B ) -> ( ( G Fn A /\ K Fn B ) -> ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) ) ) |
| 24 |
|
eleq1 |
|- ( ( K ` X ) = ( G ` X ) -> ( ( K ` X ) e. ran K <-> ( G ` X ) e. ran K ) ) |
| 25 |
24
|
eqcoms |
|- ( ( G ` X ) = ( K ` X ) -> ( ( K ` X ) e. ran K <-> ( G ` X ) e. ran K ) ) |
| 26 |
25
|
anbi2d |
|- ( ( G ` X ) = ( K ` X ) -> ( ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) <-> ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) ) ) |
| 27 |
|
elin |
|- ( ( G ` X ) e. ( ran G i^i ran K ) <-> ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) ) |
| 28 |
27
|
biimpri |
|- ( ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) -> ( G ` X ) e. ( ran G i^i ran K ) ) |
| 29 |
26 28
|
biimtrdi |
|- ( ( G ` X ) = ( K ` X ) -> ( ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) -> ( G ` X ) e. ( ran G i^i ran K ) ) ) |
| 30 |
23 29
|
sylan9 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( ( G Fn A /\ K Fn B ) -> ( G ` X ) e. ( ran G i^i ran K ) ) ) |
| 31 |
|
fveq2 |
|- ( x = ( G ` X ) -> ( F ` x ) = ( F ` ( G ` X ) ) ) |
| 32 |
|
fveq2 |
|- ( x = ( G ` X ) -> ( H ` x ) = ( H ` ( G ` X ) ) ) |
| 33 |
31 32
|
eqeq12d |
|- ( x = ( G ` X ) -> ( ( F ` x ) = ( H ` x ) <-> ( F ` ( G ` X ) ) = ( H ` ( G ` X ) ) ) ) |
| 34 |
33
|
rspcva |
|- ( ( ( G ` X ) e. ( ran G i^i ran K ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( F ` ( G ` X ) ) = ( H ` ( G ` X ) ) ) |
| 35 |
34
|
eqcomd |
|- ( ( ( G ` X ) e. ( ran G i^i ran K ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 36 |
35
|
ex |
|- ( ( G ` X ) e. ( ran G i^i ran K ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) |
| 37 |
30 36
|
syl6 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( ( G Fn A /\ K Fn B ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) ) |
| 38 |
37
|
com23 |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( ( G Fn A /\ K Fn B ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) ) |
| 39 |
38
|
3impia |
|- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( ( G Fn A /\ K Fn B ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) |
| 40 |
39
|
impcom |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 41 |
10 14 40
|
3eqtrrd |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( F ` ( G ` X ) ) = ( ( H o. K ) ` X ) ) |
| 42 |
5 41
|
eqtrd |
|- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) |
| 43 |
42
|
ex |
|- ( ( G Fn A /\ K Fn B ) -> ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |