| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvconst0ci.1 |  |-  B e. _V | 
						
							| 2 |  | fvconst0ci.2 |  |-  Y = ( ( A X. { B } ) ` X ) | 
						
							| 3 |  | dmxpss |  |-  dom ( A X. { B } ) C_ A | 
						
							| 4 | 3 | sseli |  |-  ( X e. dom ( A X. { B } ) -> X e. A ) | 
						
							| 5 | 1 | fvconst2 |  |-  ( X e. A -> ( ( A X. { B } ) ` X ) = B ) | 
						
							| 6 | 4 5 | syl |  |-  ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) | 
						
							| 7 | 2 6 | eqtrid |  |-  ( X e. dom ( A X. { B } ) -> Y = B ) | 
						
							| 8 | 7 | olcd |  |-  ( X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) | 
						
							| 9 |  | ndmfv |  |-  ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) | 
						
							| 10 | 2 9 | eqtrid |  |-  ( -. X e. dom ( A X. { B } ) -> Y = (/) ) | 
						
							| 11 | 10 | orcd |  |-  ( -. X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) | 
						
							| 12 | 8 11 | pm2.61i |  |-  ( Y = (/) \/ Y = B ) |