| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvconstdomi.1 |  |-  B e. _V | 
						
							| 2 |  | dmxpss |  |-  dom ( A X. { B } ) C_ A | 
						
							| 3 | 2 | sseli |  |-  ( X e. dom ( A X. { B } ) -> X e. A ) | 
						
							| 4 | 1 | fvconst2 |  |-  ( X e. A -> ( ( A X. { B } ) ` X ) = B ) | 
						
							| 5 | 3 4 | syl |  |-  ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) | 
						
							| 6 |  | domrefg |  |-  ( B e. _V -> B ~<_ B ) | 
						
							| 7 | 1 6 | ax-mp |  |-  B ~<_ B | 
						
							| 8 | 5 7 | eqbrtrdi |  |-  ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) | 
						
							| 9 |  | ndmfv |  |-  ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) | 
						
							| 10 | 1 | 0dom |  |-  (/) ~<_ B | 
						
							| 11 | 9 10 | eqbrtrdi |  |-  ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) | 
						
							| 12 | 8 11 | pm2.61i |  |-  ( ( A X. { B } ) ` X ) ~<_ B |