Step |
Hyp |
Ref |
Expression |
1 |
|
fvconstdomi.1 |
|- B e. _V |
2 |
|
dmxpss |
|- dom ( A X. { B } ) C_ A |
3 |
2
|
sseli |
|- ( X e. dom ( A X. { B } ) -> X e. A ) |
4 |
1
|
fvconst2 |
|- ( X e. A -> ( ( A X. { B } ) ` X ) = B ) |
5 |
3 4
|
syl |
|- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) |
6 |
|
domrefg |
|- ( B e. _V -> B ~<_ B ) |
7 |
1 6
|
ax-mp |
|- B ~<_ B |
8 |
5 7
|
eqbrtrdi |
|- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) |
9 |
|
ndmfv |
|- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) |
10 |
1
|
0dom |
|- (/) ~<_ B |
11 |
9 10
|
eqbrtrdi |
|- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) |
12 |
8 11
|
pm2.61i |
|- ( ( A X. { B } ) ` X ) ~<_ B |