| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvconstdomi.1 |
|- B e. _V |
| 2 |
|
dmxpss |
|- dom ( A X. { B } ) C_ A |
| 3 |
2
|
sseli |
|- ( X e. dom ( A X. { B } ) -> X e. A ) |
| 4 |
1
|
fvconst2 |
|- ( X e. A -> ( ( A X. { B } ) ` X ) = B ) |
| 5 |
3 4
|
syl |
|- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) |
| 6 |
|
domrefg |
|- ( B e. _V -> B ~<_ B ) |
| 7 |
1 6
|
ax-mp |
|- B ~<_ B |
| 8 |
5 7
|
eqbrtrdi |
|- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) |
| 9 |
|
ndmfv |
|- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) |
| 10 |
1
|
0dom |
|- (/) ~<_ B |
| 11 |
9 10
|
eqbrtrdi |
|- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B ) |
| 12 |
8 11
|
pm2.61i |
|- ( ( A X. { B } ) ` X ) ~<_ B |