| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvconstr.1 |
|- ( ph -> F = ( R X. { Y } ) ) |
| 2 |
|
fvconstr.2 |
|- ( ph -> Y e. V ) |
| 3 |
|
fvconstr.3 |
|- ( ph -> Y =/= (/) ) |
| 4 |
|
df-br |
|- ( A R B <-> <. A , B >. e. R ) |
| 5 |
1
|
oveqd |
|- ( ph -> ( A F B ) = ( A ( R X. { Y } ) B ) ) |
| 6 |
|
df-ov |
|- ( A ( R X. { Y } ) B ) = ( ( R X. { Y } ) ` <. A , B >. ) |
| 7 |
5 6
|
eqtrdi |
|- ( ph -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ <. A , B >. e. R ) -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
| 9 |
|
fvconst2g |
|- ( ( Y e. V /\ <. A , B >. e. R ) -> ( ( R X. { Y } ) ` <. A , B >. ) = Y ) |
| 10 |
2 9
|
sylan |
|- ( ( ph /\ <. A , B >. e. R ) -> ( ( R X. { Y } ) ` <. A , B >. ) = Y ) |
| 11 |
8 10
|
eqtrd |
|- ( ( ph /\ <. A , B >. e. R ) -> ( A F B ) = Y ) |
| 12 |
|
simpr |
|- ( ( ph /\ ( A F B ) = Y ) -> ( A F B ) = Y ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ ( A F B ) = Y ) -> Y =/= (/) ) |
| 14 |
12 13
|
eqnetrd |
|- ( ( ph /\ ( A F B ) = Y ) -> ( A F B ) =/= (/) ) |
| 15 |
7
|
neeq1d |
|- ( ph -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( A F B ) = Y ) -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
| 17 |
14 16
|
mpbid |
|- ( ( ph /\ ( A F B ) = Y ) -> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) |
| 18 |
|
dmxpss |
|- dom ( R X. { Y } ) C_ R |
| 19 |
|
ndmfv |
|- ( -. <. A , B >. e. dom ( R X. { Y } ) -> ( ( R X. { Y } ) ` <. A , B >. ) = (/) ) |
| 20 |
19
|
necon1ai |
|- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom ( R X. { Y } ) ) |
| 21 |
18 20
|
sselid |
|- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. R ) |
| 22 |
17 21
|
syl |
|- ( ( ph /\ ( A F B ) = Y ) -> <. A , B >. e. R ) |
| 23 |
11 22
|
impbida |
|- ( ph -> ( <. A , B >. e. R <-> ( A F B ) = Y ) ) |
| 24 |
4 23
|
bitrid |
|- ( ph -> ( A R B <-> ( A F B ) = Y ) ) |