| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvconstr.1 |  |-  ( ph -> F = ( R X. { Y } ) ) | 
						
							| 2 |  | fvconstr2.2 |  |-  ( ph -> X e. ( A F B ) ) | 
						
							| 3 | 2 | ne0d |  |-  ( ph -> ( A F B ) =/= (/) ) | 
						
							| 4 | 1 | oveqd |  |-  ( ph -> ( A F B ) = ( A ( R X. { Y } ) B ) ) | 
						
							| 5 |  | df-ov |  |-  ( A ( R X. { Y } ) B ) = ( ( R X. { Y } ) ` <. A , B >. ) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( ph -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) | 
						
							| 7 | 6 | neeq1d |  |-  ( ph -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) | 
						
							| 8 |  | dmxpss |  |-  dom ( R X. { Y } ) C_ R | 
						
							| 9 |  | ndmfv |  |-  ( -. <. A , B >. e. dom ( R X. { Y } ) -> ( ( R X. { Y } ) ` <. A , B >. ) = (/) ) | 
						
							| 10 | 9 | necon1ai |  |-  ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom ( R X. { Y } ) ) | 
						
							| 11 | 8 10 | sselid |  |-  ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. R ) | 
						
							| 12 | 7 11 | biimtrdi |  |-  ( ph -> ( ( A F B ) =/= (/) -> <. A , B >. e. R ) ) | 
						
							| 13 | 3 12 | mpd |  |-  ( ph -> <. A , B >. e. R ) | 
						
							| 14 |  | df-br |  |-  ( A R B <-> <. A , B >. e. R ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ph -> A R B ) |