Step |
Hyp |
Ref |
Expression |
1 |
|
fvconstr.1 |
|- ( ph -> F = ( R X. { Y } ) ) |
2 |
|
fvconstr2.2 |
|- ( ph -> X e. ( A F B ) ) |
3 |
2
|
ne0d |
|- ( ph -> ( A F B ) =/= (/) ) |
4 |
1
|
oveqd |
|- ( ph -> ( A F B ) = ( A ( R X. { Y } ) B ) ) |
5 |
|
df-ov |
|- ( A ( R X. { Y } ) B ) = ( ( R X. { Y } ) ` <. A , B >. ) |
6 |
4 5
|
eqtrdi |
|- ( ph -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
7 |
6
|
neeq1d |
|- ( ph -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
8 |
|
dmxpss |
|- dom ( R X. { Y } ) C_ R |
9 |
|
ndmfv |
|- ( -. <. A , B >. e. dom ( R X. { Y } ) -> ( ( R X. { Y } ) ` <. A , B >. ) = (/) ) |
10 |
9
|
necon1ai |
|- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom ( R X. { Y } ) ) |
11 |
8 10
|
sselid |
|- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. R ) |
12 |
7 11
|
syl6bi |
|- ( ph -> ( ( A F B ) =/= (/) -> <. A , B >. e. R ) ) |
13 |
3 12
|
mpd |
|- ( ph -> <. A , B >. e. R ) |
14 |
|
df-br |
|- ( A R B <-> <. A , B >. e. R ) |
15 |
13 14
|
sylibr |
|- ( ph -> A R B ) |