Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|- S = ( SymGrp ` N ) |
2 |
|
gsmsymgrfix.b |
|- B = ( Base ` S ) |
3 |
|
gsmsymgreq.z |
|- Z = ( SymGrp ` M ) |
4 |
|
gsmsymgreq.p |
|- P = ( Base ` Z ) |
5 |
|
gsmsymgreq.i |
|- I = ( N i^i M ) |
6 |
1 2
|
symgbasf |
|- ( G e. B -> G : N --> N ) |
7 |
6
|
ffnd |
|- ( G e. B -> G Fn N ) |
8 |
3 4
|
symgbasf |
|- ( K e. P -> K : M --> M ) |
9 |
8
|
ffnd |
|- ( K e. P -> K Fn M ) |
10 |
7 9
|
anim12i |
|- ( ( G e. B /\ K e. P ) -> ( G Fn N /\ K Fn M ) ) |
11 |
10
|
adantr |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G Fn N /\ K Fn M ) ) |
12 |
5
|
eleq2i |
|- ( X e. I <-> X e. ( N i^i M ) ) |
13 |
12
|
biimpi |
|- ( X e. I -> X e. ( N i^i M ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> X e. ( N i^i M ) ) |
15 |
14
|
adantl |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> X e. ( N i^i M ) ) |
16 |
|
simpr2 |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G ` X ) = ( K ` X ) ) |
17 |
1 2
|
symgbasf1o |
|- ( G e. B -> G : N -1-1-onto-> N ) |
18 |
|
dff1o5 |
|- ( G : N -1-1-onto-> N <-> ( G : N -1-1-> N /\ ran G = N ) ) |
19 |
|
eqcom |
|- ( ran G = N <-> N = ran G ) |
20 |
19
|
biimpi |
|- ( ran G = N -> N = ran G ) |
21 |
18 20
|
simplbiim |
|- ( G : N -1-1-onto-> N -> N = ran G ) |
22 |
17 21
|
syl |
|- ( G e. B -> N = ran G ) |
23 |
3 4
|
symgbasf1o |
|- ( K e. P -> K : M -1-1-onto-> M ) |
24 |
|
dff1o5 |
|- ( K : M -1-1-onto-> M <-> ( K : M -1-1-> M /\ ran K = M ) ) |
25 |
|
eqcom |
|- ( ran K = M <-> M = ran K ) |
26 |
25
|
biimpi |
|- ( ran K = M -> M = ran K ) |
27 |
24 26
|
simplbiim |
|- ( K : M -1-1-onto-> M -> M = ran K ) |
28 |
23 27
|
syl |
|- ( K e. P -> M = ran K ) |
29 |
22 28
|
ineqan12d |
|- ( ( G e. B /\ K e. P ) -> ( N i^i M ) = ( ran G i^i ran K ) ) |
30 |
5 29
|
eqtrid |
|- ( ( G e. B /\ K e. P ) -> I = ( ran G i^i ran K ) ) |
31 |
30
|
raleqdv |
|- ( ( G e. B /\ K e. P ) -> ( A. n e. I ( F ` n ) = ( H ` n ) <-> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
32 |
31
|
biimpcd |
|- ( A. n e. I ( F ` n ) = ( H ` n ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
33 |
32
|
3ad2ant3 |
|- ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
34 |
33
|
impcom |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) |
35 |
15 16 34
|
3jca |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
36 |
|
fvcofneq |
|- ( ( G Fn N /\ K Fn M ) -> ( ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |
37 |
11 35 36
|
sylc |
|- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) |
38 |
37
|
ex |
|- ( ( G e. B /\ K e. P ) -> ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |