Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fdiagfn.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
Assertion | fvdiagfn | |- ( ( I e. W /\ X e. B ) -> ( F ` X ) = ( I X. { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdiagfn.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
2 | sneq | |- ( x = X -> { x } = { X } ) |
|
3 | 2 | xpeq2d | |- ( x = X -> ( I X. { x } ) = ( I X. { X } ) ) |
4 | simpr | |- ( ( I e. W /\ X e. B ) -> X e. B ) |
|
5 | snex | |- { X } e. _V |
|
6 | xpexg | |- ( ( I e. W /\ { X } e. _V ) -> ( I X. { X } ) e. _V ) |
|
7 | 5 6 | mpan2 | |- ( I e. W -> ( I X. { X } ) e. _V ) |
8 | 7 | adantr | |- ( ( I e. W /\ X e. B ) -> ( I X. { X } ) e. _V ) |
9 | 1 3 4 8 | fvmptd3 | |- ( ( I e. W /\ X e. B ) -> ( F ` X ) = ( I X. { X } ) ) |