Metamath Proof Explorer


Theorem fvdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f
|- F = ( x e. B |-> ( I X. { x } ) )
Assertion fvdiagfn
|- ( ( I e. W /\ X e. B ) -> ( F ` X ) = ( I X. { X } ) )

Proof

Step Hyp Ref Expression
1 fdiagfn.f
 |-  F = ( x e. B |-> ( I X. { x } ) )
2 sneq
 |-  ( x = X -> { x } = { X } )
3 2 xpeq2d
 |-  ( x = X -> ( I X. { x } ) = ( I X. { X } ) )
4 simpr
 |-  ( ( I e. W /\ X e. B ) -> X e. B )
5 snex
 |-  { X } e. _V
6 xpexg
 |-  ( ( I e. W /\ { X } e. _V ) -> ( I X. { X } ) e. _V )
7 5 6 mpan2
 |-  ( I e. W -> ( I X. { X } ) e. _V )
8 7 adantr
 |-  ( ( I e. W /\ X e. B ) -> ( I X. { X } ) e. _V )
9 1 3 4 8 fvmptd3
 |-  ( ( I e. W /\ X e. B ) -> ( F ` X ) = ( I X. { X } ) )