| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvdifsupp.1 | 
							 |-  ( ph -> F Fn A )  | 
						
						
							| 2 | 
							
								
							 | 
							fvdifsupp.2 | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							fvdifsupp.3 | 
							 |-  ( ph -> Z e. W )  | 
						
						
							| 4 | 
							
								
							 | 
							fvdifsupp.4 | 
							 |-  ( ph -> X e. ( A \ ( F supp Z ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eldifbd | 
							 |-  ( ph -> -. X e. ( F supp Z ) )  | 
						
						
							| 6 | 
							
								4
							 | 
							eldifad | 
							 |-  ( ph -> X e. A )  | 
						
						
							| 7 | 
							
								
							 | 
							elsuppfn | 
							 |-  ( ( F Fn A /\ A e. V /\ Z e. W ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) )  | 
						
						
							| 8 | 
							
								1 2 3 7
							 | 
							syl3anc | 
							 |-  ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpbirand | 
							 |-  ( ph -> ( X e. ( F supp Z ) <-> ( F ` X ) =/= Z ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							necon2bbid | 
							 |-  ( ph -> ( ( F ` X ) = Z <-> -. X e. ( F supp Z ) ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							mpbird | 
							 |-  ( ph -> ( F ` X ) = Z )  |