Metamath Proof Explorer


Theorem fvelima

Description: Function value in an image. Part of Theorem 4.4(iii) of Monk1 p. 42. (Contributed by NM, 29-Apr-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion fvelima
|- ( ( Fun F /\ A e. ( F " B ) ) -> E. x e. B ( F ` x ) = A )

Proof

Step Hyp Ref Expression
1 funbrfv
 |-  ( Fun F -> ( x F A -> ( F ` x ) = A ) )
2 1 reximdv
 |-  ( Fun F -> ( E. x e. B x F A -> E. x e. B ( F ` x ) = A ) )
3 elimag
 |-  ( A e. ( F " B ) -> ( A e. ( F " B ) <-> E. x e. B x F A ) )
4 3 ibi
 |-  ( A e. ( F " B ) -> E. x e. B x F A )
5 2 4 impel
 |-  ( ( Fun F /\ A e. ( F " B ) ) -> E. x e. B ( F ` x ) = A )