| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( C e. ( F " B ) -> C e. _V ) |
| 2 |
1
|
anim2i |
|- ( ( ( F Fn A /\ B C_ A ) /\ C e. ( F " B ) ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
| 3 |
|
fvex |
|- ( F ` x ) e. _V |
| 4 |
|
eleq1 |
|- ( ( F ` x ) = C -> ( ( F ` x ) e. _V <-> C e. _V ) ) |
| 5 |
3 4
|
mpbii |
|- ( ( F ` x ) = C -> C e. _V ) |
| 6 |
5
|
rexlimivw |
|- ( E. x e. B ( F ` x ) = C -> C e. _V ) |
| 7 |
6
|
anim2i |
|- ( ( ( F Fn A /\ B C_ A ) /\ E. x e. B ( F ` x ) = C ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
| 8 |
|
eleq1 |
|- ( y = C -> ( y e. ( F " B ) <-> C e. ( F " B ) ) ) |
| 9 |
|
eqeq2 |
|- ( y = C -> ( ( F ` x ) = y <-> ( F ` x ) = C ) ) |
| 10 |
9
|
rexbidv |
|- ( y = C -> ( E. x e. B ( F ` x ) = y <-> E. x e. B ( F ` x ) = C ) ) |
| 11 |
8 10
|
bibi12d |
|- ( y = C -> ( ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) <-> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
| 12 |
11
|
imbi2d |
|- ( y = C -> ( ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) <-> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) ) |
| 13 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 14 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 15 |
14
|
sseq2d |
|- ( F Fn A -> ( B C_ dom F <-> B C_ A ) ) |
| 16 |
15
|
biimpar |
|- ( ( F Fn A /\ B C_ A ) -> B C_ dom F ) |
| 17 |
|
dfimafn |
|- ( ( Fun F /\ B C_ dom F ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
| 18 |
13 16 17
|
syl2an2r |
|- ( ( F Fn A /\ B C_ A ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
| 19 |
18
|
eqabrd |
|- ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
| 20 |
12 19
|
vtoclg |
|- ( C e. _V -> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
| 21 |
20
|
impcom |
|- ( ( ( F Fn A /\ B C_ A ) /\ C e. _V ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |
| 22 |
2 7 21
|
pm5.21nd |
|- ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |