Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( C e. ( F " B ) -> C e. _V ) |
2 |
1
|
anim2i |
|- ( ( ( F Fn A /\ B C_ A ) /\ C e. ( F " B ) ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
3 |
|
fvex |
|- ( F ` x ) e. _V |
4 |
|
eleq1 |
|- ( ( F ` x ) = C -> ( ( F ` x ) e. _V <-> C e. _V ) ) |
5 |
3 4
|
mpbii |
|- ( ( F ` x ) = C -> C e. _V ) |
6 |
5
|
rexlimivw |
|- ( E. x e. B ( F ` x ) = C -> C e. _V ) |
7 |
6
|
anim2i |
|- ( ( ( F Fn A /\ B C_ A ) /\ E. x e. B ( F ` x ) = C ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
8 |
|
eleq1 |
|- ( y = C -> ( y e. ( F " B ) <-> C e. ( F " B ) ) ) |
9 |
|
eqeq2 |
|- ( y = C -> ( ( F ` x ) = y <-> ( F ` x ) = C ) ) |
10 |
9
|
rexbidv |
|- ( y = C -> ( E. x e. B ( F ` x ) = y <-> E. x e. B ( F ` x ) = C ) ) |
11 |
8 10
|
bibi12d |
|- ( y = C -> ( ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) <-> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
12 |
11
|
imbi2d |
|- ( y = C -> ( ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) <-> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) ) |
13 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
14 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
15 |
14
|
sseq2d |
|- ( F Fn A -> ( B C_ dom F <-> B C_ A ) ) |
16 |
15
|
biimpar |
|- ( ( F Fn A /\ B C_ A ) -> B C_ dom F ) |
17 |
|
dfimafn |
|- ( ( Fun F /\ B C_ dom F ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
18 |
13 16 17
|
syl2an2r |
|- ( ( F Fn A /\ B C_ A ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
19 |
18
|
abeq2d |
|- ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
20 |
12 19
|
vtoclg |
|- ( C e. _V -> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
21 |
20
|
impcom |
|- ( ( ( F Fn A /\ B C_ A ) /\ C e. _V ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |
22 |
2 7 21
|
pm5.21nd |
|- ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |