Metamath Proof Explorer


Theorem fvelimabd

Description: Deduction form of fvelimab . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvelimabd.1
|- ( ph -> F Fn A )
fvelimabd.2
|- ( ph -> B C_ A )
Assertion fvelimabd
|- ( ph -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) )

Proof

Step Hyp Ref Expression
1 fvelimabd.1
 |-  ( ph -> F Fn A )
2 fvelimabd.2
 |-  ( ph -> B C_ A )
3 fvelimab
 |-  ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) )