Step |
Hyp |
Ref |
Expression |
1 |
|
fvelimad.x |
|- F/_ x F |
2 |
|
fvelimad.f |
|- ( ph -> F Fn A ) |
3 |
|
fvelimad.c |
|- ( ph -> C e. ( F " B ) ) |
4 |
|
elimag |
|- ( C e. ( F " B ) -> ( C e. ( F " B ) <-> E. y e. B y F C ) ) |
5 |
4
|
ibi |
|- ( C e. ( F " B ) -> E. y e. B y F C ) |
6 |
3 5
|
syl |
|- ( ph -> E. y e. B y F C ) |
7 |
|
nfv |
|- F/ y ph |
8 |
|
nfre1 |
|- F/ y E. y e. ( A i^i B ) ( F ` y ) = C |
9 |
|
vex |
|- y e. _V |
10 |
9
|
a1i |
|- ( ( ph /\ y F C ) -> y e. _V ) |
11 |
3
|
adantr |
|- ( ( ph /\ y F C ) -> C e. ( F " B ) ) |
12 |
|
simpr |
|- ( ( ph /\ y F C ) -> y F C ) |
13 |
10 11 12
|
breldmd |
|- ( ( ph /\ y F C ) -> y e. dom F ) |
14 |
2
|
fndmd |
|- ( ph -> dom F = A ) |
15 |
14
|
adantr |
|- ( ( ph /\ y F C ) -> dom F = A ) |
16 |
13 15
|
eleqtrd |
|- ( ( ph /\ y F C ) -> y e. A ) |
17 |
16
|
3adant2 |
|- ( ( ph /\ y e. B /\ y F C ) -> y e. A ) |
18 |
|
simp2 |
|- ( ( ph /\ y e. B /\ y F C ) -> y e. B ) |
19 |
17 18
|
elind |
|- ( ( ph /\ y e. B /\ y F C ) -> y e. ( A i^i B ) ) |
20 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
21 |
2 20
|
syl |
|- ( ph -> Fun F ) |
22 |
21
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y F C ) -> Fun F ) |
23 |
|
simp3 |
|- ( ( ph /\ y e. B /\ y F C ) -> y F C ) |
24 |
|
funbrfv |
|- ( Fun F -> ( y F C -> ( F ` y ) = C ) ) |
25 |
22 23 24
|
sylc |
|- ( ( ph /\ y e. B /\ y F C ) -> ( F ` y ) = C ) |
26 |
|
rspe |
|- ( ( y e. ( A i^i B ) /\ ( F ` y ) = C ) -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
27 |
19 25 26
|
syl2anc |
|- ( ( ph /\ y e. B /\ y F C ) -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
28 |
27
|
3exp |
|- ( ph -> ( y e. B -> ( y F C -> E. y e. ( A i^i B ) ( F ` y ) = C ) ) ) |
29 |
7 8 28
|
rexlimd |
|- ( ph -> ( E. y e. B y F C -> E. y e. ( A i^i B ) ( F ` y ) = C ) ) |
30 |
6 29
|
mpd |
|- ( ph -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
31 |
|
nfv |
|- F/ y ( F ` x ) = C |
32 |
|
nfcv |
|- F/_ x y |
33 |
1 32
|
nffv |
|- F/_ x ( F ` y ) |
34 |
33
|
nfeq1 |
|- F/ x ( F ` y ) = C |
35 |
|
fveqeq2 |
|- ( x = y -> ( ( F ` x ) = C <-> ( F ` y ) = C ) ) |
36 |
31 34 35
|
cbvrexw |
|- ( E. x e. ( A i^i B ) ( F ` x ) = C <-> E. y e. ( A i^i B ) ( F ` y ) = C ) |
37 |
30 36
|
sylibr |
|- ( ph -> E. x e. ( A i^i B ) ( F ` x ) = C ) |