| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnrnfv |
|- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |
| 2 |
1
|
eleq2d |
|- ( F Fn A -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ` x ) } ) ) |
| 3 |
|
fvex |
|- ( F ` x ) e. _V |
| 4 |
|
eleq1 |
|- ( ( F ` x ) = B -> ( ( F ` x ) e. _V <-> B e. _V ) ) |
| 5 |
3 4
|
mpbii |
|- ( ( F ` x ) = B -> B e. _V ) |
| 6 |
5
|
rexlimivw |
|- ( E. x e. A ( F ` x ) = B -> B e. _V ) |
| 7 |
|
eqeq1 |
|- ( y = B -> ( y = ( F ` x ) <-> B = ( F ` x ) ) ) |
| 8 |
|
eqcom |
|- ( B = ( F ` x ) <-> ( F ` x ) = B ) |
| 9 |
7 8
|
bitrdi |
|- ( y = B -> ( y = ( F ` x ) <-> ( F ` x ) = B ) ) |
| 10 |
9
|
rexbidv |
|- ( y = B -> ( E. x e. A y = ( F ` x ) <-> E. x e. A ( F ` x ) = B ) ) |
| 11 |
6 10
|
elab3 |
|- ( B e. { y | E. x e. A y = ( F ` x ) } <-> E. x e. A ( F ` x ) = B ) |
| 12 |
2 11
|
bitrdi |
|- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) ) |