Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvelrnbf.1 | |- F/_ x A |
|
fvelrnbf.2 | |- F/_ x B |
||
fvelrnbf.3 | |- F/_ x F |
||
Assertion | fvelrnbf | |- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnbf.1 | |- F/_ x A |
|
2 | fvelrnbf.2 | |- F/_ x B |
|
3 | fvelrnbf.3 | |- F/_ x F |
|
4 | fvelrnb | |- ( F Fn A -> ( B e. ran F <-> E. y e. A ( F ` y ) = B ) ) |
|
5 | nfcv | |- F/_ y A |
|
6 | nfcv | |- F/_ x y |
|
7 | 3 6 | nffv | |- F/_ x ( F ` y ) |
8 | 7 2 | nfeq | |- F/ x ( F ` y ) = B |
9 | nfv | |- F/ y ( F ` x ) = B |
|
10 | fveqeq2 | |- ( y = x -> ( ( F ` y ) = B <-> ( F ` x ) = B ) ) |
|
11 | 5 1 8 9 10 | cbvrexfw | |- ( E. y e. A ( F ` y ) = B <-> E. x e. A ( F ` x ) = B ) |
12 | 4 11 | bitrdi | |- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) ) |