Metamath Proof Explorer


Theorem fveq1d

Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003)

Ref Expression
Hypothesis fveq1d.1
|- ( ph -> F = G )
Assertion fveq1d
|- ( ph -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 fveq1d.1
 |-  ( ph -> F = G )
2 fveq1
 |-  ( F = G -> ( F ` A ) = ( G ` A ) )
3 1 2 syl
 |-  ( ph -> ( F ` A ) = ( G ` A ) )