| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvres |  |-  ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) ) | 
						
							| 2 |  | fvres |  |-  ( A e. B -> ( ( G |` B ) ` A ) = ( G ` A ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( A e. B -> ( ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) <-> ( F ` A ) = ( G ` A ) ) ) | 
						
							| 4 | 3 | biimprd |  |-  ( A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) | 
						
							| 5 |  | nfvres |  |-  ( -. A e. B -> ( ( F |` B ) ` A ) = (/) ) | 
						
							| 6 |  | nfvres |  |-  ( -. A e. B -> ( ( G |` B ) ` A ) = (/) ) | 
						
							| 7 | 5 6 | eqtr4d |  |-  ( -. A e. B -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) | 
						
							| 8 | 7 | a1d |  |-  ( -. A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) | 
						
							| 9 | 4 8 | pm2.61i |  |-  ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |