Metamath Proof Explorer


Theorem fveval1fvcl

Description: The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses fveval1fvcl.q
|- O = ( eval1 ` R )
fveval1fvcl.p
|- P = ( Poly1 ` R )
fveval1fvcl.b
|- B = ( Base ` R )
fveval1fvcl.u
|- U = ( Base ` P )
fveval1fvcl.r
|- ( ph -> R e. CRing )
fveval1fvcl.y
|- ( ph -> Y e. B )
fveval1fvcl.m
|- ( ph -> M e. U )
Assertion fveval1fvcl
|- ( ph -> ( ( O ` M ) ` Y ) e. B )

Proof

Step Hyp Ref Expression
1 fveval1fvcl.q
 |-  O = ( eval1 ` R )
2 fveval1fvcl.p
 |-  P = ( Poly1 ` R )
3 fveval1fvcl.b
 |-  B = ( Base ` R )
4 fveval1fvcl.u
 |-  U = ( Base ` P )
5 fveval1fvcl.r
 |-  ( ph -> R e. CRing )
6 fveval1fvcl.y
 |-  ( ph -> Y e. B )
7 fveval1fvcl.m
 |-  ( ph -> M e. U )
8 eqid
 |-  ( R ^s B ) = ( R ^s B )
9 eqid
 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) )
10 3 fvexi
 |-  B e. _V
11 10 a1i
 |-  ( ph -> B e. _V )
12 1 2 8 3 evl1rhm
 |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) )
13 4 9 rhmf
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) )
14 5 12 13 3syl
 |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) )
15 14 7 ffvelrnd
 |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) )
16 8 3 9 5 11 15 pwselbas
 |-  ( ph -> ( O ` M ) : B --> B )
17 16 6 ffvelrnd
 |-  ( ph -> ( ( O ` M ) ` Y ) e. B )