| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveval1fvcl.q |  |-  O = ( eval1 ` R ) | 
						
							| 2 |  | fveval1fvcl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | fveval1fvcl.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | fveval1fvcl.u |  |-  U = ( Base ` P ) | 
						
							| 5 |  | fveval1fvcl.r |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | fveval1fvcl.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | fveval1fvcl.m |  |-  ( ph -> M e. U ) | 
						
							| 8 |  | eqid |  |-  ( R ^s B ) = ( R ^s B ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) | 
						
							| 10 | 3 | fvexi |  |-  B e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 12 | 1 2 8 3 | evl1rhm |  |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) | 
						
							| 13 | 4 9 | rhmf |  |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) | 
						
							| 14 | 5 12 13 | 3syl |  |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) | 
						
							| 15 | 14 7 | ffvelcdmd |  |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) | 
						
							| 16 | 8 3 9 5 11 15 | pwselbas |  |-  ( ph -> ( O ` M ) : B --> B ) | 
						
							| 17 | 16 6 | ffvelcdmd |  |-  ( ph -> ( ( O ` M ) ` Y ) e. B ) |