Step |
Hyp |
Ref |
Expression |
1 |
|
fveval1fvcl.q |
|- O = ( eval1 ` R ) |
2 |
|
fveval1fvcl.p |
|- P = ( Poly1 ` R ) |
3 |
|
fveval1fvcl.b |
|- B = ( Base ` R ) |
4 |
|
fveval1fvcl.u |
|- U = ( Base ` P ) |
5 |
|
fveval1fvcl.r |
|- ( ph -> R e. CRing ) |
6 |
|
fveval1fvcl.y |
|- ( ph -> Y e. B ) |
7 |
|
fveval1fvcl.m |
|- ( ph -> M e. U ) |
8 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
9 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
10 |
3
|
fvexi |
|- B e. _V |
11 |
10
|
a1i |
|- ( ph -> B e. _V ) |
12 |
1 2 8 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
13 |
4 9
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
14 |
5 12 13
|
3syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
15 |
14 7
|
ffvelrnd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
16 |
8 3 9 5 11 15
|
pwselbas |
|- ( ph -> ( O ` M ) : B --> B ) |
17 |
16 6
|
ffvelrnd |
|- ( ph -> ( ( O ` M ) ` Y ) e. B ) |