| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1f |
|- ( F : { A , B } -1-1-> { X , Y } -> F : { A , B } --> { X , Y } ) |
| 2 |
|
prid1g |
|- ( A e. V -> A e. { A , B } ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( A e. V /\ B e. W /\ A =/= B ) -> A e. { A , B } ) |
| 4 |
|
ffvelcdm |
|- ( ( F : { A , B } --> { X , Y } /\ A e. { A , B } ) -> ( F ` A ) e. { X , Y } ) |
| 5 |
1 3 4
|
syl2anr |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( F ` A ) e. { X , Y } ) |
| 6 |
|
prid2g |
|- ( B e. W -> B e. { A , B } ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( A e. V /\ B e. W /\ A =/= B ) -> B e. { A , B } ) |
| 8 |
|
ffvelcdm |
|- ( ( F : { A , B } --> { X , Y } /\ B e. { A , B } ) -> ( F ` B ) e. { X , Y } ) |
| 9 |
1 7 8
|
syl2anr |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( F ` B ) e. { X , Y } ) |
| 10 |
|
elpri |
|- ( ( F ` A ) e. { X , Y } -> ( ( F ` A ) = X \/ ( F ` A ) = Y ) ) |
| 11 |
|
elpri |
|- ( ( F ` B ) e. { X , Y } -> ( ( F ` B ) = X \/ ( F ` B ) = Y ) ) |
| 12 |
|
eqtr3 |
|- ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( F ` A ) = ( F ` B ) ) |
| 13 |
3 7
|
jca |
|- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A e. { A , B } /\ B e. { A , B } ) ) |
| 14 |
|
f1veqaeq |
|- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. { A , B } /\ B e. { A , B } ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
| 15 |
13 14
|
sylan2 |
|- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
| 16 |
12 15
|
syl5 |
|- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> A = B ) ) |
| 17 |
16
|
ex |
|- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> A = B ) ) ) |
| 18 |
|
eqneqall |
|- ( A = B -> ( A =/= B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 19 |
18
|
com12 |
|- ( A =/= B -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 21 |
20
|
a1i |
|- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 22 |
17 21
|
syldd |
|- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 23 |
22
|
impcom |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 24 |
|
olc |
|- ( ( ( F ` A ) = Y /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |
| 25 |
24
|
a1i |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 26 |
|
orc |
|- ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |
| 27 |
26
|
a1i |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 28 |
|
eqtr3 |
|- ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( F ` A ) = ( F ` B ) ) |
| 29 |
28 15
|
syl5 |
|- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> A = B ) ) |
| 30 |
29
|
ex |
|- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> A = B ) ) ) |
| 31 |
30 21
|
syldd |
|- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 32 |
31
|
impcom |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 33 |
23 25 27 32
|
ccased |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( ( F ` A ) = X \/ ( F ` A ) = Y ) /\ ( ( F ` B ) = X \/ ( F ` B ) = Y ) ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 34 |
10 11 33
|
syl2ani |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) e. { X , Y } /\ ( F ` B ) e. { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 35 |
5 9 34
|
mp2and |
|- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |