| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1f |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> F : ( 0 ..^ 3 ) --> { X , Y , Z } ) |
| 2 |
|
3nn |
|- 3 e. NN |
| 3 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
| 4 |
2 3
|
mpbir |
|- 0 e. ( 0 ..^ 3 ) |
| 5 |
4
|
a1i |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 0 e. ( 0 ..^ 3 ) ) |
| 6 |
1 5
|
ffvelcdmd |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 0 ) e. { X , Y , Z } ) |
| 7 |
|
1nn0 |
|- 1 e. NN0 |
| 8 |
|
1lt3 |
|- 1 < 3 |
| 9 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
| 10 |
7 2 8 9
|
mpbir3an |
|- 1 e. ( 0 ..^ 3 ) |
| 11 |
10
|
a1i |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 1 e. ( 0 ..^ 3 ) ) |
| 12 |
1 11
|
ffvelcdmd |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 1 ) e. { X , Y , Z } ) |
| 13 |
|
2nn0 |
|- 2 e. NN0 |
| 14 |
|
2lt3 |
|- 2 < 3 |
| 15 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) ) |
| 16 |
13 2 14 15
|
mpbir3an |
|- 2 e. ( 0 ..^ 3 ) |
| 17 |
16
|
a1i |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 2 e. ( 0 ..^ 3 ) ) |
| 18 |
1 17
|
ffvelcdmd |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 2 ) e. { X , Y , Z } ) |
| 19 |
|
eltpi |
|- ( ( F ` 0 ) e. { X , Y , Z } -> ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) ) |
| 20 |
|
eltpi |
|- ( ( F ` 1 ) e. { X , Y , Z } -> ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) ) |
| 21 |
|
eltpi |
|- ( ( F ` 2 ) e. { X , Y , Z } -> ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) |
| 22 |
19 20 21
|
3anim123i |
|- ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) ) |
| 23 |
|
eqeq2 |
|- ( X = ( F ` 0 ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 24 |
23
|
eqcoms |
|- ( ( F ` 0 ) = X -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 25 |
24
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 26 |
|
f1veqaeq |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 1 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) ) |
| 27 |
10 4 26
|
mpanr12 |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) ) |
| 28 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 29 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 30 |
27 28 29
|
syl6mpi |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 31 |
30
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 32 |
25 31
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 33 |
|
eqeq2 |
|- ( X = ( F ` 0 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 34 |
33
|
eqcoms |
|- ( ( F ` 0 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 35 |
34
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 36 |
16 4
|
pm3.2i |
|- ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) |
| 37 |
36
|
a1i |
|- ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) |
| 38 |
|
f1veqaeq |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
| 39 |
37 38
|
sylan2 |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
| 40 |
|
2ne0 |
|- 2 =/= 0 |
| 41 |
|
eqneqall |
|- ( 2 = 0 -> ( 2 =/= 0 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 42 |
39 40 41
|
syl6mpi |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 43 |
35 42
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 44 |
43
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 45 |
|
eqeq2 |
|- ( Y = ( F ` 1 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 46 |
45
|
eqcoms |
|- ( ( F ` 1 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 48 |
16 10
|
pm3.2i |
|- ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) |
| 49 |
48
|
a1i |
|- ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) ) |
| 50 |
|
f1veqaeq |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
| 51 |
49 50
|
sylan2 |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
| 52 |
|
1ne2 |
|- 1 =/= 2 |
| 53 |
52
|
necomi |
|- 2 =/= 1 |
| 54 |
|
eqneqall |
|- ( 2 = 1 -> ( 2 =/= 1 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 55 |
51 53 54
|
syl6mpi |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 57 |
47 56
|
sylbid |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 58 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = X ) |
| 59 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = Y ) |
| 60 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z ) |
| 61 |
58 59 60
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) ) |
| 62 |
61
|
orcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) ) |
| 63 |
62
|
3mix1d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 64 |
63
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 65 |
44 57 64
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 66 |
65
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 67 |
43
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 68 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = X ) |
| 69 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = Z ) |
| 70 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y ) |
| 71 |
68 69 70
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) |
| 72 |
71
|
olcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) ) |
| 73 |
72
|
3mix1d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 74 |
73
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 75 |
|
eqeq2 |
|- ( Z = ( F ` 1 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 76 |
75
|
eqcoms |
|- ( ( F ` 1 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 77 |
76
|
adantl |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 78 |
16 10 50
|
mpanr12 |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
| 79 |
78 53 54
|
syl6mpi |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 80 |
79
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 81 |
80
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 82 |
77 81
|
sylbid |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 83 |
67 74 82
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 84 |
83
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 85 |
32 66 84
|
3jaod |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 86 |
85
|
ex |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = X -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 87 |
|
eqeq2 |
|- ( X = ( F ` 1 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 88 |
87
|
eqcoms |
|- ( ( F ` 1 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 89 |
88
|
adantl |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 90 |
79
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 91 |
90
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 92 |
89 91
|
sylbid |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 93 |
|
eqeq2 |
|- ( Y = ( F ` 0 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 94 |
93
|
eqcoms |
|- ( ( F ` 0 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 95 |
94
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 96 |
16 4 38
|
mpanr12 |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
| 97 |
96 40 41
|
syl6mpi |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 98 |
97
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 99 |
95 98
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 100 |
99
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 101 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = Y ) |
| 102 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = X ) |
| 103 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z ) |
| 104 |
101 102 103
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) ) |
| 105 |
104
|
orcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) ) |
| 106 |
105
|
3mix2d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 107 |
106
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 108 |
92 100 107
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 109 |
108
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 110 |
|
eqeq2 |
|- ( Y = ( F ` 0 ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 111 |
110
|
eqcoms |
|- ( ( F ` 0 ) = Y -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 112 |
111
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 113 |
30
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 114 |
112 113
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 115 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Y ) |
| 116 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Z ) |
| 117 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X ) |
| 118 |
115 116 117
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) |
| 119 |
118
|
olcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) ) |
| 120 |
119
|
3mix2d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 121 |
120
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 122 |
99
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 123 |
76
|
adantl |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 124 |
90
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 125 |
123 124
|
sylbid |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 126 |
121 122 125
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 127 |
126
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 128 |
109 114 127
|
3jaod |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 129 |
128
|
ex |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Y -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 130 |
88
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 131 |
79
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 132 |
130 131
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 133 |
132
|
adantlr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 134 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = Z ) |
| 135 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = X ) |
| 136 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y ) |
| 137 |
134 135 136
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) ) |
| 138 |
137
|
orcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) |
| 139 |
138
|
3mix3d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 140 |
139
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 141 |
|
eqeq2 |
|- ( Z = ( F ` 0 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 142 |
141
|
eqcoms |
|- ( ( F ` 0 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 143 |
142
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 144 |
97
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 145 |
143 144
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 146 |
145
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 147 |
133 140 146
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 148 |
147
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 149 |
|
simpllr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Z ) |
| 150 |
|
simplr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Y ) |
| 151 |
|
simpr |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X ) |
| 152 |
149 150 151
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) |
| 153 |
152
|
olcd |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) |
| 154 |
153
|
3mix3d |
|- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 155 |
154
|
ex |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 156 |
46
|
adantl |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 157 |
79
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 158 |
157
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 159 |
156 158
|
sylbid |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 160 |
145
|
adantr |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 161 |
155 159 160
|
3jaod |
|- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 162 |
161
|
ex |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 163 |
|
eqeq2 |
|- ( Z = ( F ` 0 ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 164 |
163
|
eqcoms |
|- ( ( F ` 0 ) = Z -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 165 |
164
|
adantl |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 166 |
30
|
adantr |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 167 |
165 166
|
sylbid |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 168 |
148 162 167
|
3jaod |
|- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 169 |
168
|
ex |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Z -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 170 |
86 129 169
|
3jaod |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 171 |
170
|
3impd |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 172 |
22 171
|
syl5 |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 173 |
6 12 18 172
|
mp3and |
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |