Metamath Proof Explorer


Theorem fvf1tp

Description: Values of a one-to-one function between two sets with three elements. Actually, such a function is a bijection. (Contributed by AV, 23-Jul-2025)

Ref Expression
Assertion fvf1tp
|- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )

Proof

Step Hyp Ref Expression
1 f1f
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> F : ( 0 ..^ 3 ) --> { X , Y , Z } )
2 3nn
 |-  3 e. NN
3 lbfzo0
 |-  ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN )
4 2 3 mpbir
 |-  0 e. ( 0 ..^ 3 )
5 4 a1i
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 0 e. ( 0 ..^ 3 ) )
6 1 5 ffvelcdmd
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 0 ) e. { X , Y , Z } )
7 1nn0
 |-  1 e. NN0
8 1lt3
 |-  1 < 3
9 elfzo0
 |-  ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) )
10 7 2 8 9 mpbir3an
 |-  1 e. ( 0 ..^ 3 )
11 10 a1i
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 1 e. ( 0 ..^ 3 ) )
12 1 11 ffvelcdmd
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 1 ) e. { X , Y , Z } )
13 2nn0
 |-  2 e. NN0
14 2lt3
 |-  2 < 3
15 elfzo0
 |-  ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) )
16 13 2 14 15 mpbir3an
 |-  2 e. ( 0 ..^ 3 )
17 16 a1i
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 2 e. ( 0 ..^ 3 ) )
18 1 17 ffvelcdmd
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 2 ) e. { X , Y , Z } )
19 eltpi
 |-  ( ( F ` 0 ) e. { X , Y , Z } -> ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) )
20 eltpi
 |-  ( ( F ` 1 ) e. { X , Y , Z } -> ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) )
21 eltpi
 |-  ( ( F ` 2 ) e. { X , Y , Z } -> ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) )
22 19 20 21 3anim123i
 |-  ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) )
23 eqeq2
 |-  ( X = ( F ` 0 ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) )
24 23 eqcoms
 |-  ( ( F ` 0 ) = X -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) )
25 24 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) )
26 f1veqaeq
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 1 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) )
27 10 4 26 mpanr12
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) )
28 ax-1ne0
 |-  1 =/= 0
29 eqneqall
 |-  ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
30 27 28 29 syl6mpi
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
31 30 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
32 25 31 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
33 eqeq2
 |-  ( X = ( F ` 0 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) )
34 33 eqcoms
 |-  ( ( F ` 0 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) )
35 34 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) )
36 16 4 pm3.2i
 |-  ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) )
37 36 a1i
 |-  ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) )
38 f1veqaeq
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) )
39 37 38 sylan2
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) )
40 2ne0
 |-  2 =/= 0
41 eqneqall
 |-  ( 2 = 0 -> ( 2 =/= 0 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
42 39 40 41 syl6mpi
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
43 35 42 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
44 43 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
45 eqeq2
 |-  ( Y = ( F ` 1 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) )
46 45 eqcoms
 |-  ( ( F ` 1 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) )
47 46 adantl
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) )
48 16 10 pm3.2i
 |-  ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) )
49 48 a1i
 |-  ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) )
50 f1veqaeq
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) )
51 49 50 sylan2
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) )
52 1ne2
 |-  1 =/= 2
53 52 necomi
 |-  2 =/= 1
54 eqneqall
 |-  ( 2 = 1 -> ( 2 =/= 1 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
55 51 53 54 syl6mpi
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
56 55 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
57 47 56 sylbid
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
58 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = X )
59 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = Y )
60 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z )
61 58 59 60 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) )
62 61 orcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) )
63 62 3mix1d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
64 63 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
65 44 57 64 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
66 65 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
67 43 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
68 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = X )
69 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = Z )
70 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y )
71 68 69 70 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) )
72 71 olcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) )
73 72 3mix1d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
74 73 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
75 eqeq2
 |-  ( Z = ( F ` 1 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) )
76 75 eqcoms
 |-  ( ( F ` 1 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) )
77 76 adantl
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) )
78 16 10 50 mpanr12
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) )
79 78 53 54 syl6mpi
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
80 79 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
81 80 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
82 77 81 sylbid
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
83 67 74 82 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
84 83 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
85 32 66 84 3jaod
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
86 85 ex
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = X -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) )
87 eqeq2
 |-  ( X = ( F ` 1 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) )
88 87 eqcoms
 |-  ( ( F ` 1 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) )
89 88 adantl
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) )
90 79 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
91 90 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
92 89 91 sylbid
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
93 eqeq2
 |-  ( Y = ( F ` 0 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) )
94 93 eqcoms
 |-  ( ( F ` 0 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) )
95 94 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) )
96 16 4 38 mpanr12
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) )
97 96 40 41 syl6mpi
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
98 97 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
99 95 98 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
100 99 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
101 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = Y )
102 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = X )
103 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z )
104 101 102 103 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) )
105 104 orcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) )
106 105 3mix2d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
107 106 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
108 92 100 107 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
109 108 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
110 eqeq2
 |-  ( Y = ( F ` 0 ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) )
111 110 eqcoms
 |-  ( ( F ` 0 ) = Y -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) )
112 111 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) )
113 30 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
114 112 113 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
115 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Y )
116 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Z )
117 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X )
118 115 116 117 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) )
119 118 olcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) )
120 119 3mix2d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
121 120 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
122 99 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
123 76 adantl
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) )
124 90 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
125 123 124 sylbid
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
126 121 122 125 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
127 126 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
128 109 114 127 3jaod
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
129 128 ex
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Y -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) )
130 88 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) )
131 79 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
132 130 131 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
133 132 adantlr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
134 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = Z )
135 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = X )
136 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y )
137 134 135 136 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) )
138 137 orcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) )
139 138 3mix3d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
140 139 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
141 eqeq2
 |-  ( Z = ( F ` 0 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) )
142 141 eqcoms
 |-  ( ( F ` 0 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) )
143 142 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) )
144 97 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
145 143 144 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
146 145 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
147 133 140 146 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
148 147 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
149 simpllr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Z )
150 simplr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Y )
151 simpr
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X )
152 149 150 151 3jca
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) )
153 152 olcd
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) )
154 153 3mix3d
 |-  ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )
155 154 ex
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
156 46 adantl
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) )
157 79 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
158 157 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
159 156 158 sylbid
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
160 145 adantr
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
161 155 159 160 3jaod
 |-  ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
162 161 ex
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
163 eqeq2
 |-  ( Z = ( F ` 0 ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) )
164 163 eqcoms
 |-  ( ( F ` 0 ) = Z -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) )
165 164 adantl
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) )
166 30 adantr
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
167 165 166 sylbid
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
168 148 162 167 3jaod
 |-  ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) )
169 168 ex
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Z -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) )
170 86 129 169 3jaod
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) )
171 170 3impd
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
172 22 171 syl5
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) )
173 6 12 18 172 mp3and
 |-  ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) )