Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> P : ( 0 ... N ) --> V ) |
2 |
|
simp2 |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. NN0 ) |
3 |
|
simp1 |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> N e. NN0 ) |
4 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
6 |
|
ltle |
|- ( ( I e. RR /\ N e. RR ) -> ( I < N -> I <_ N ) ) |
7 |
4 5 6
|
syl2anr |
|- ( ( N e. NN0 /\ I e. NN0 ) -> ( I < N -> I <_ N ) ) |
8 |
7
|
3impia |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I <_ N ) |
9 |
|
elfz2nn0 |
|- ( I e. ( 0 ... N ) <-> ( I e. NN0 /\ N e. NN0 /\ I <_ N ) ) |
10 |
2 3 8 9
|
syl3anbrc |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. ( 0 ... N ) ) |
11 |
10
|
adantr |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> I e. ( 0 ... N ) ) |
12 |
1 11
|
ffvelrnd |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> ( P ` I ) e. V ) |