Metamath Proof Explorer


Theorem fvif

Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fvif
|- ( F ` if ( ph , A , B ) ) = if ( ph , ( F ` A ) , ( F ` B ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( if ( ph , A , B ) = A -> ( F ` if ( ph , A , B ) ) = ( F ` A ) )
2 fveq2
 |-  ( if ( ph , A , B ) = B -> ( F ` if ( ph , A , B ) ) = ( F ` B ) )
3 1 2 ifsb
 |-  ( F ` if ( ph , A , B ) ) = if ( ph , ( F ` A ) , ( F ` B ) )