| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi |  |-  ( A e. dom F -> { A } C_ dom F ) | 
						
							| 2 |  | funimass3 |  |-  ( ( Fun F /\ { A } C_ dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( Fun F /\ A e. dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) | 
						
							| 4 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 5 | 4 | snss |  |-  ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) | 
						
							| 6 |  | eqid |  |-  dom F = dom F | 
						
							| 7 |  | df-fn |  |-  ( F Fn dom F <-> ( Fun F /\ dom F = dom F ) ) | 
						
							| 8 | 7 | biimpri |  |-  ( ( Fun F /\ dom F = dom F ) -> F Fn dom F ) | 
						
							| 9 | 6 8 | mpan2 |  |-  ( Fun F -> F Fn dom F ) | 
						
							| 10 |  | fnsnfv |  |-  ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) | 
						
							| 12 | 11 | sseq1d |  |-  ( ( Fun F /\ A e. dom F ) -> ( { ( F ` A ) } C_ B <-> ( F " { A } ) C_ B ) ) | 
						
							| 13 | 5 12 | bitrid |  |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> ( F " { A } ) C_ B ) ) | 
						
							| 14 |  | snssg |  |-  ( A e. dom F -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) | 
						
							| 16 | 3 13 15 | 3bitr4d |  |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |