Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
|- ( A e. dom F -> { A } C_ dom F ) |
2 |
|
funimass3 |
|- ( ( Fun F /\ { A } C_ dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) |
4 |
|
fvex |
|- ( F ` A ) e. _V |
5 |
4
|
snss |
|- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
6 |
|
eqid |
|- dom F = dom F |
7 |
|
df-fn |
|- ( F Fn dom F <-> ( Fun F /\ dom F = dom F ) ) |
8 |
7
|
biimpri |
|- ( ( Fun F /\ dom F = dom F ) -> F Fn dom F ) |
9 |
6 8
|
mpan2 |
|- ( Fun F -> F Fn dom F ) |
10 |
|
fnsnfv |
|- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
11 |
9 10
|
sylan |
|- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
12 |
11
|
sseq1d |
|- ( ( Fun F /\ A e. dom F ) -> ( { ( F ` A ) } C_ B <-> ( F " { A } ) C_ B ) ) |
13 |
5 12
|
bitrid |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> ( F " { A } ) C_ B ) ) |
14 |
|
snssg |
|- ( A e. dom F -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) |
15 |
14
|
adantl |
|- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) |
16 |
3 13 15
|
3bitr4d |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |