| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
|- ( A e. ( `' F " B ) -> { A } C_ ( `' F " B ) ) |
| 2 |
|
funimass2 |
|- ( ( Fun F /\ { A } C_ ( `' F " B ) ) -> ( F " { A } ) C_ B ) |
| 3 |
1 2
|
sylan2 |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F " { A } ) C_ B ) |
| 4 |
|
fvex |
|- ( F ` A ) e. _V |
| 5 |
4
|
snss |
|- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
| 6 |
|
cnvimass |
|- ( `' F " B ) C_ dom F |
| 7 |
6
|
sseli |
|- ( A e. ( `' F " B ) -> A e. dom F ) |
| 8 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 9 |
|
fnsnfv |
|- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 10 |
8 9
|
sylanb |
|- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 11 |
7 10
|
sylan2 |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 12 |
11
|
sseq1d |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( { ( F ` A ) } C_ B <-> ( F " { A } ) C_ B ) ) |
| 13 |
5 12
|
bitrid |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( ( F ` A ) e. B <-> ( F " { A } ) C_ B ) ) |
| 14 |
3 13
|
mpbird |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |