Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|- ( F : ( 0 ... K ) --> V -> F Fn ( 0 ... K ) ) |
2 |
1
|
adantr |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> F Fn ( 0 ... K ) ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
3
|
a1i |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. NN0 ) |
5 |
|
simpr |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. NN0 ) |
6 |
|
nn0ge0 |
|- ( K e. NN0 -> 0 <_ K ) |
7 |
6
|
adantl |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 <_ K ) |
8 |
|
elfz2nn0 |
|- ( 0 e. ( 0 ... K ) <-> ( 0 e. NN0 /\ K e. NN0 /\ 0 <_ K ) ) |
9 |
4 5 7 8
|
syl3anbrc |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. ( 0 ... K ) ) |
10 |
|
id |
|- ( K e. NN0 -> K e. NN0 ) |
11 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
12 |
11
|
leidd |
|- ( K e. NN0 -> K <_ K ) |
13 |
|
elfz2nn0 |
|- ( K e. ( 0 ... K ) <-> ( K e. NN0 /\ K e. NN0 /\ K <_ K ) ) |
14 |
10 10 12 13
|
syl3anbrc |
|- ( K e. NN0 -> K e. ( 0 ... K ) ) |
15 |
14
|
adantl |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. ( 0 ... K ) ) |
16 |
|
fnimapr |
|- ( ( F Fn ( 0 ... K ) /\ 0 e. ( 0 ... K ) /\ K e. ( 0 ... K ) ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) |
17 |
2 9 15 16
|
syl3anc |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) |
18 |
17
|
ineq1d |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) ) |
19 |
18
|
eqeq1d |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) ) ) |
20 |
|
disj |
|- ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) ) |
21 |
|
fvex |
|- ( F ` 0 ) e. _V |
22 |
|
fvex |
|- ( F ` K ) e. _V |
23 |
|
eleq1 |
|- ( v = ( F ` 0 ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) |
24 |
23
|
notbid |
|- ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) |
25 |
|
df-nel |
|- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) |
26 |
24 25
|
bitr4di |
|- ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) ) ) |
27 |
|
eleq1 |
|- ( v = ( F ` K ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) |
28 |
27
|
notbid |
|- ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) |
29 |
|
df-nel |
|- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) |
30 |
28 29
|
bitr4di |
|- ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
31 |
21 22 26 30
|
ralpr |
|- ( A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
32 |
20 31
|
bitri |
|- ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
33 |
19 32
|
bitrdi |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |