| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : ( 0 ... K ) --> V -> F Fn ( 0 ... K ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> F Fn ( 0 ... K ) ) | 
						
							| 3 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 4 | 3 | a1i |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. NN0 ) | 
						
							| 5 |  | simpr |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 6 |  | nn0ge0 |  |-  ( K e. NN0 -> 0 <_ K ) | 
						
							| 7 | 6 | adantl |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 <_ K ) | 
						
							| 8 |  | elfz2nn0 |  |-  ( 0 e. ( 0 ... K ) <-> ( 0 e. NN0 /\ K e. NN0 /\ 0 <_ K ) ) | 
						
							| 9 | 4 5 7 8 | syl3anbrc |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. ( 0 ... K ) ) | 
						
							| 10 |  | id |  |-  ( K e. NN0 -> K e. NN0 ) | 
						
							| 11 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 12 | 11 | leidd |  |-  ( K e. NN0 -> K <_ K ) | 
						
							| 13 |  | elfz2nn0 |  |-  ( K e. ( 0 ... K ) <-> ( K e. NN0 /\ K e. NN0 /\ K <_ K ) ) | 
						
							| 14 | 10 10 12 13 | syl3anbrc |  |-  ( K e. NN0 -> K e. ( 0 ... K ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. ( 0 ... K ) ) | 
						
							| 16 |  | fnimapr |  |-  ( ( F Fn ( 0 ... K ) /\ 0 e. ( 0 ... K ) /\ K e. ( 0 ... K ) ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) | 
						
							| 17 | 2 9 15 16 | syl3anc |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) | 
						
							| 18 | 17 | ineq1d |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) ) ) | 
						
							| 20 |  | disj |  |-  ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) ) | 
						
							| 21 |  | fvex |  |-  ( F ` 0 ) e. _V | 
						
							| 22 |  | fvex |  |-  ( F ` K ) e. _V | 
						
							| 23 |  | eleq1 |  |-  ( v = ( F ` 0 ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 24 | 23 | notbid |  |-  ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 25 |  | df-nel |  |-  ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) | 
						
							| 26 | 24 25 | bitr4di |  |-  ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 27 |  | eleq1 |  |-  ( v = ( F ` K ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 28 | 27 | notbid |  |-  ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 29 |  | df-nel |  |-  ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) | 
						
							| 30 | 28 29 | bitr4di |  |-  ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 31 | 21 22 26 30 | ralpr |  |-  ( A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 32 | 20 31 | bitri |  |-  ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) | 
						
							| 33 | 19 32 | bitrdi |  |-  ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |