Metamath Proof Explorer


Theorem fviss

Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Assertion fviss
|- ( _I ` A ) C_ A

Proof

Step Hyp Ref Expression
1 id
 |-  ( x e. ( _I ` A ) -> x e. ( _I ` A ) )
2 elfvex
 |-  ( x e. ( _I ` A ) -> A e. _V )
3 fvi
 |-  ( A e. _V -> ( _I ` A ) = A )
4 2 3 syl
 |-  ( x e. ( _I ` A ) -> ( _I ` A ) = A )
5 1 4 eleqtrd
 |-  ( x e. ( _I ` A ) -> x e. A )
6 5 ssriv
 |-  ( _I ` A ) C_ A