Metamath Proof Explorer


Theorem fvixp

Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis fvixp.1
|- ( x = C -> B = D )
Assertion fvixp
|- ( ( F e. X_ x e. A B /\ C e. A ) -> ( F ` C ) e. D )

Proof

Step Hyp Ref Expression
1 fvixp.1
 |-  ( x = C -> B = D )
2 elixp2
 |-  ( F e. X_ x e. A B <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) )
3 2 simp3bi
 |-  ( F e. X_ x e. A B -> A. x e. A ( F ` x ) e. B )
4 fveq2
 |-  ( x = C -> ( F ` x ) = ( F ` C ) )
5 4 1 eleq12d
 |-  ( x = C -> ( ( F ` x ) e. B <-> ( F ` C ) e. D ) )
6 5 rspccva
 |-  ( ( A. x e. A ( F ` x ) e. B /\ C e. A ) -> ( F ` C ) e. D )
7 3 6 sylan
 |-  ( ( F e. X_ x e. A B /\ C e. A ) -> ( F ` C ) e. D )