| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmpt2d.1 |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 2 |
|
fvmpt2d.4 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 3 |
1
|
fveq1d |
|- ( ph -> ( F ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 4 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 5 |
|
id |
|- ( x e. A -> x e. A ) |
| 6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 7 |
6
|
fvmpt2 |
|- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 8 |
5 2 7
|
syl2an2 |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 9 |
4 8
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |