Metamath Proof Explorer


Theorem fvmpt2f

Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017)

Ref Expression
Hypothesis fvmpt2f.0
|- F/_ x A
Assertion fvmpt2f
|- ( ( x e. A /\ B e. C ) -> ( ( x e. A |-> B ) ` x ) = B )

Proof

Step Hyp Ref Expression
1 fvmpt2f.0
 |-  F/_ x A
2 csbeq1
 |-  ( y = x -> [_ y / x ]_ B = [_ x / x ]_ B )
3 csbid
 |-  [_ x / x ]_ B = B
4 2 3 eqtrdi
 |-  ( y = x -> [_ y / x ]_ B = B )
5 nfcv
 |-  F/_ y A
6 nfcv
 |-  F/_ y B
7 nfcsb1v
 |-  F/_ x [_ y / x ]_ B
8 csbeq1a
 |-  ( x = y -> B = [_ y / x ]_ B )
9 1 5 6 7 8 cbvmptf
 |-  ( x e. A |-> B ) = ( y e. A |-> [_ y / x ]_ B )
10 4 9 fvmptg
 |-  ( ( x e. A /\ B e. C ) -> ( ( x e. A |-> B ) ` x ) = B )