Metamath Proof Explorer


Theorem fvmpt3

Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses fvmpt3.a
|- ( x = A -> B = C )
fvmpt3.b
|- F = ( x e. D |-> B )
fvmpt3.c
|- ( x e. D -> B e. V )
Assertion fvmpt3
|- ( A e. D -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvmpt3.a
 |-  ( x = A -> B = C )
2 fvmpt3.b
 |-  F = ( x e. D |-> B )
3 fvmpt3.c
 |-  ( x e. D -> B e. V )
4 1 eleq1d
 |-  ( x = A -> ( B e. V <-> C e. V ) )
5 4 3 vtoclga
 |-  ( A e. D -> C e. V )
6 1 2 fvmptg
 |-  ( ( A e. D /\ C e. V ) -> ( F ` A ) = C )
7 5 6 mpdan
 |-  ( A e. D -> ( F ` A ) = C )