Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmpt3.a | |- ( x = A -> B = C ) |
|
| fvmpt3.b | |- F = ( x e. D |-> B ) |
||
| fvmpt3.c | |- ( x e. D -> B e. V ) |
||
| Assertion | fvmpt3 | |- ( A e. D -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | |- ( x = A -> B = C ) |
|
| 2 | fvmpt3.b | |- F = ( x e. D |-> B ) |
|
| 3 | fvmpt3.c | |- ( x e. D -> B e. V ) |
|
| 4 | 1 | eleq1d | |- ( x = A -> ( B e. V <-> C e. V ) ) |
| 5 | 4 3 | vtoclga | |- ( A e. D -> C e. V ) |
| 6 | 1 2 | fvmptg | |- ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |
| 7 | 5 6 | mpdan | |- ( A e. D -> ( F ` A ) = C ) |